Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate SM_b21376 SM_b21376 sugar uptake ABC transporter ATP-binding protein
Query= uniprot:A0A1N7TX47 (495 letters) >lcl|FitnessBrowser__Smeli:SM_b21376 SM_b21376 sugar uptake ABC transporter ATP-binding protein Length = 503 Score = 365 bits (936), Expect = e-105 Identities = 208/497 (41%), Positives = 302/497 (60%), Gaps = 5/497 (1%) Query: 2 ARPLLLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAG 61 A +L+ V K++ V AL+ RL +R G VH L G NGAGKST + IL G+ +G Sbjct: 5 AADTILKITDVTKSFGQVAALKGMRLEVRRGRVHTLLGENGAGKSTLMKILAGVHGATSG 64 Query: 62 SILLNGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALN 121 I+L+G + P EA + G+A++ QEL +TVAENI REPRR G I D KAL Sbjct: 65 EIVLDGQAYRPANPQEAASLGLAIVFQELSLCNNLTVAENILATREPRRFGFIND-KALV 123 Query: 122 RRTRELLDSLEFDVDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQT 181 + ++ L +D T + LS+AQ QLVEIAK SHD +V+I+DEPTS++ + EA+ Sbjct: 124 AKAHRIVADLRLPIDVTEKVGNLSIAQRQLVEIAKGLSHDAKVVILDEPTSSLSDSEAEI 183 Query: 182 LFKAIRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVG 241 LF+ I RL +GA I+Y+SHR+ E+ +++DD ++ RDG +V + ++ + L+ +VG Sbjct: 184 LFEIIGRLRQRGAAIIYISHRMEEIMRLSDDITVIRDGEYVSTHARDEVTIETLIALMVG 243 Query: 242 QELTRIDHKVGRECAANTC--LQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFL 299 + + I AA+ L VD L+R GEF D+S +R GEILG +GL+GSGRSE + Sbjct: 244 RRMDEIYPPPVHHVAADRAPVLAVDRLTREGEFQDVSFDVRAGEILGFFGLVGSGRSEVM 303 Query: 300 NCIYGLTVADSGSVTLQGKPMPIGLPKATINAGMSLVTEDRKDSGLVLTGSILSNIALSA 359 N ++G+ A +G+V L G+ + P I G+ VTE+RK+ GLVL S+ NI+++A Sbjct: 304 NALFGMKSA-AGTVRLDGEVVRFRSPDQAIARGVGFVTENRKEEGLVLGHSVEWNISMAA 362 Query: 360 YKRLS-SWSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPV 418 + I E A + V +L IKT SLE P ++SGGNQQK+VLAK L T P Sbjct: 363 LADFAGGLGFIRNGAERAAASEQVGKLSIKTNSLETPAGALSGGNQQKIVLAKWLLTRPK 422 Query: 419 CLLCDEPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRLVT 478 L+ DEPTRG+D GAK EIY ++ + G A +++SS+ PE+L +SDR+ V G Sbjct: 423 VLILDEPTRGVDVGAKFEIYKIIRELAAEGTAILLISSDLPEVLGMSDRVVVMHEGAPGA 482 Query: 479 ISTDTALSQEALLRLAS 495 +AL+ E ++ A+ Sbjct: 483 TLEGSALTPETIMAHAT 499 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 549 Number of extensions: 25 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 503 Length adjustment: 34 Effective length of query: 461 Effective length of database: 469 Effective search space: 216209 Effective search space used: 216209 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory