Align Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized)
to candidate Synpcc7942_1379 Synpcc7942_1379 acetyl-CoA carboxylase biotin carboxylase subunit
Query= SwissProt::I3R7G3 (601 letters) >lcl|FitnessBrowser__SynE:Synpcc7942_1379 Synpcc7942_1379 acetyl-CoA carboxylase biotin carboxylase subunit Length = 453 Score = 456 bits (1174), Expect = e-133 Identities = 230/451 (50%), Positives = 313/451 (69%), Gaps = 1/451 (0%) Query: 2 FSKVLVANRGEIAVRVMRACEELGVRTVAVYSEADKHGGHVRYADEAYNIGPARAADSYL 61 F+K+L+ANRGEIA+R++R CEELG+ T+AV+S D++ HV+ ADEA IG A ++ SYL Sbjct: 3 FNKILIANRGEIALRILRTCEELGIGTIAVHSTVDRNALHVQLADEAVCIGEAASSKSYL 62 Query: 62 DHESVIEAARKADADAIHPGYGFLAENAEFARKVEDSEFTWVGPSADAMERLGEKTKARS 121 + ++I AA +A AIHPGYGFLAENA FA D T++GPS D++ +G+K+ A+ Sbjct: 63 NIPNIIAAALTRNASAIHPGYGFLAENARFAEICADHHLTFIGPSPDSIRAMGDKSTAKE 122 Query: 122 LMQDADVPVVPGTTEPADSAEDVKAVADDYGYPVAIKAEGGGGGRGLKVVHSEDEVDGQF 181 MQ VP +PG+ + VA + GYPV IKA GGGGRG+++V +++ F Sbjct: 123 TMQRVGVPTIPGSDGLLTDVDSAAKVAAEIGYPVMIKATAGGGGRGMRLVREPADLEKLF 182 Query: 182 ETAKREGEAYFDNASVYVEKYLEAPRHIEVQILADEHGNVRHLGERDCSLQRRHQKVIEE 241 A+ E EA F N +Y+EK+++ PRH+E QILAD +GNV HLGERDCS+QRRHQK++EE Sbjct: 183 LAAQGEAEAAFGNPGLYLEKFIDRPRHVEFQILADAYGNVVHLGERDCSIQRRHQKLLEE 242 Query: 242 APSPALSEDLRERIGEAARRGVRAAEYTNAGTVEFLVE-DGEFYFMEVNTRIQVEHTVTE 300 APSPALS DLR+++G+AA + +A Y AGTVEFLV+ G FYFME+NTRIQVEH VTE Sbjct: 243 APSPALSADLRQKMGDAAVKVAQAIGYIGAGTVEFLVDATGNFYFMEMNTRIQVEHPVTE 302 Query: 301 EVTGLDVVKWQLRVAAGEELDFSQDDVEIEGHSMEFRINAEAPEKEFAPATGTLSTYDPP 360 +TGLD++ Q+R+A GE L F Q D+++ GH++E RINAE PE F P G ++ Y PP Sbjct: 303 MITGLDLIAEQIRIAQGEALRFRQADIQLRGHAIECRINAEDPEYNFRPNPGRITGYLPP 362 Query: 361 GGIGIRMDDAVRQGDEIGGDYDSMIAKLIVTGSDREEVLVRAERALNEFDIEGLRTVIPF 420 GG G+R+D V EI YDS+I KLIV G+ REE + R +RAL E I GL T + F Sbjct: 363 GGPGVRVDSHVYTDYEIPPYYDSLIGKLIVWGATREEAIARMQRALRECAITGLPTTLSF 422 Query: 421 HRLMLTDEAFREGSHTTKYLDEVLDPERIEA 451 H+LML F G T ++++V+ P +++ Sbjct: 423 HQLMLQMPEFLRGELYTNFVEQVMLPRILKS 453 Lambda K H 0.312 0.132 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 600 Number of extensions: 21 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 601 Length of database: 453 Length adjustment: 35 Effective length of query: 566 Effective length of database: 418 Effective search space: 236588 Effective search space used: 236588 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory