Align Xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate Synpcc7942_0626 Synpcc7942_0626 dihydroxy-acid dehydratase
Query= reanno::pseudo6_N2E2:Pf6N2E2_1668 (594 letters) >lcl|FitnessBrowser__SynE:Synpcc7942_0626 Synpcc7942_0626 dihydroxy-acid dehydratase Length = 619 Score = 196 bits (499), Expect = 2e-54 Identities = 169/571 (29%), Positives = 264/571 (46%), Gaps = 88/571 (15%) Query: 35 GMTREELQSGRPIIGIAQTGSDLTPCNRHHLELAQRVKAGIRDAGGIPMEFPVHPIAEQS 94 GM E+ + +PII +A + + P + H +L Q V I AGG+ EF + + Sbjct: 26 GMKDEDFE--KPIIAVANSFTQFVPGHVHLKDLGQLVAREIERAGGVAKEFNTIAVDDGI 83 Query: 95 RRPTAAL-----DRNLAYLGLVEILHGYPLDGVVLTTGCDKTTPACLMAAATTDLPAIVL 149 + R+L + +++ + D +V + CDK TP LMAA ++PA+ + Sbjct: 84 AMGHGGMLYSLPSRDLIADSVEYMVNAHCADALVCISNCDKITPGMLMAALRLNIPAVFV 143 Query: 150 SGGPMLDGHHKGELIGSGTVLWHARNLMAAGEIDYEGFMEMTT---AASPSVGHCNTMGT 206 SGGPM G K L G L ++ A + D E ++ T +A P+ G C+ M T Sbjct: 144 SGGPMEAG--KVILNGEERHLDLVDAMVVAAD-DRESDEDVATIERSACPTCGSCSGMFT 200 Query: 207 ALSMNALAEALGMSLPGCASIPAPYRERGQMAYATGKRICDLVRQ-------DIRPSQIM 259 A SMN L EALG+SLPG S+ A + +R ++ G+ L +Q + P I Sbjct: 201 ANSMNCLTEALGLSLPGNGSLLATHGDRKELFLEAGRLAVKLAKQYYEQDDESVLPRSIA 260 Query: 260 TRQAFENAIAVASALGASSNCPPHLIAIARHMGVELSLEDWQRIGEDVPLLVNCMPA-GK 318 + +AFENAI + A+G S+N HL+A A GV+ +++D R+ +P L P+ K Sbjct: 261 SFKAFENAICLDIAMGGSTNTVLHLLAAAHEAGVDFTMKDIDRLSRKIPNLCKVAPSTQK 320 Query: 319 YLGEGFHRAGGVPSVMHELQKAGRLHEDCATVSGKTIG---------------------- 356 Y E HRAGGV +++ EL +AG LH + TV ++G Sbjct: 321 YHMEDVHRAGGVIAILGELDRAGLLHREVPTVHSPSLGAALDQWDINRETATEEAKSRYL 380 Query: 357 ---------EIVSNS-------LTSNTDVIHPFDTPLKHRAGFIVLSGNFFD-SAIMKMS 399 E S S L I + G VL GN + I+K + Sbjct: 381 AAPGGVPTQEAFSQSKRWTALDLDRENGCIRDIEHAYSQDGGLAVLYGNLAEQGCIVKTA 440 Query: 400 VVGEAFRKTYLSEPGAENSFEARAIVFEGPEDYHARIDDPALD------IDERCILVIRG 453 V E +VF GP D A++ + E +++IR Sbjct: 441 GVDE------------------NILVFSGPA-VVCESQDEAVNWILNGRVKEGDVVLIRY 481 Query: 454 VGTVGYPGSAEVVNMAPPAALIKQGI-DSLPCLGDGRQSGTSASPSILNMSPEAAVGGGL 512 G G PG E+ + P + L +G+ + + DGR SG ++ SI ++SPEAA GG + Sbjct: 482 EGPRGGPGMQEM--LYPTSYLKSKGLGKACALITDGRFSGGTSGLSIGHVSPEAAEGGLI 539 Query: 513 ALLKTNDRLKVDLNTRTVNLLIDDAEMAQRR 543 AL++ DR+++D+ R ++L + + E+A RR Sbjct: 540 ALVEQGDRIEIDIPNRRIHLAVSEEELAHRR 570 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 924 Number of extensions: 48 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 594 Length of database: 619 Length adjustment: 37 Effective length of query: 557 Effective length of database: 582 Effective search space: 324174 Effective search space used: 324174 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory