Align N-succinylglutamate 5-semialdehyde dehydrogenase; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase; SGSD (uncharacterized)
to candidate GFF519 PS417_02645 aldehyde dehydrogenase
Query= curated2:Q2G9T9 (471 letters) >FitnessBrowser__WCS417:GFF519 Length = 496 Score = 200 bits (509), Expect = 8e-56 Identities = 140/450 (31%), Positives = 227/450 (50%), Gaps = 26/450 (5%) Query: 9 HEPATGAEV----WRGKVGDVEEVVARARRAWPAWAAQPLATRIELVRRFANEVRKDADN 64 H P G+ + W G +VE+ V+RA A+ AW P R ELVR+F + +R+ + Sbjct: 24 HSPIDGSRIGSVHWEG-AAEVEQQVSRAEHAFEAWRKVPAPRRGELVRQFGDVLREYKAD 82 Query: 65 LATMISRETGKPLWEARTEVDSVVN----KVEISIRAYADRTSQRKLDSALQGTAALRHK 120 L ++S E GK E EV +++ V +S + Y + + ++ T Sbjct: 83 LGELVSWEAGKITQEGLGEVQEMIDICDFAVGLSRQLYGLTIASERPGHHMRET----WH 138 Query: 121 PHGVLAVLGPYNFPAHLPNGHIVPALIAGNAVVFKPSEKTPATGEMLAQCFHRA-----G 175 P GV+ V+ +NFP + + AL+ GNAV++KPSEKTP T F R G Sbjct: 139 PLGVVGVISAFNFPVAVWAWNTTLALVCGNAVIWKPSEKTPLTALACQALFERVLKKFDG 198 Query: 176 IPAAVVQVLIGGPEEGQALVAHDGIDGVLFTGSAHAGIAINRKLASNPGKIVALEMGGNN 235 P + QV+IGG + G ALV + + TGS G + K+A+ + + LE+GGNN Sbjct: 199 APEYLSQVIIGGRDAGAALVDDPRVALISATGSTRMGREVAPKVAARFARSI-LELGGNN 257 Query: 236 PIVVWDTPKIEDAATLIVQSAFTSAGQRCTAARRLIIKASMFDEVIDHVKRLADRIIVGA 295 +++ + ++ A I+ SA +AGQRCT RRLI S+ E++ +K ++ +G Sbjct: 258 AMILGPSADLDMAVRAILFSAVGTAGQRCTTLRRLIAHESVKAEIVTRLKAAYSKVRIGH 317 Query: 296 PFDDPAPFMGPVIDNRTADGLTESFVYLLSSGGRPIKHMVRLQEDRP---FLSPAIIDVT 352 P + +GP+ID D + ++ LS GG+ +L++ P ++SPAI+++ Sbjct: 318 PLE--GNLIGPLIDKHGFDNMQDALEQALSEGGKVFGGKRQLEDQFPNAYYVSPAIVEMP 375 Query: 353 AVADRPDVELFGPLLQVVRVDDFDEAIAEANNTRFGLSASLIGGDPQDYNRFWANIRA-- 410 +D E F P+L V+ DF+EA+ N GLS+ + D ++ +F + + + Sbjct: 376 EQSDVVCTETFAPILYVIGYSDFNEALRLNNAVPQGLSSCIFTTDVREAEQFMSAVGSDC 435 Query: 411 GVVNWNRPTNGASSAAPFGGVGLSGNHRPS 440 G+ N N +GA FGG +G R S Sbjct: 436 GIANVNIGPSGAEIGGAFGGEKETGGGRES 465 Lambda K H 0.319 0.135 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 601 Number of extensions: 35 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 471 Length of database: 496 Length adjustment: 34 Effective length of query: 437 Effective length of database: 462 Effective search space: 201894 Effective search space used: 201894 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory