Align Amino acid permease-associated region (characterized, see rationale)
to candidate GFF2803 PS417_14300 aspartate:proton symporter
Query= uniprot:B2SZ32 (555 letters) >FitnessBrowser__WCS417:GFF2803 Length = 539 Score = 367 bits (942), Expect = e-106 Identities = 192/526 (36%), Positives = 301/526 (57%), Gaps = 10/526 (1%) Query: 26 KSSIQRNIGPFALMLTGLGSIIGSGWLFGAWKAAKIAGPAAVCAWVIGAVVILAIALTYA 85 + ++ + L GLG+I GSGWLF A + IAGPA + +W+IG +L + + Y Sbjct: 4 QGKFKKQLSLMDLTFIGLGAIFGSGWLFAASHVSAIAGPAGIISWLIGGFAVLLLGIVYC 63 Query: 86 ELGAMFPESGGMVRYARYSHGALVGFISAWANWIAIVSVIPIEAEASIQYMSTWPYPWAH 145 ELGA P +GG+VRY YSHG L+G++ + IA S++ IE AS QY + W Sbjct: 64 ELGAALPRAGGVVRYPVYSHGPLLGYLMGFITLIAFSSLVAIEVVASRQYAAAWFPELTK 123 Query: 146 ALFVDGSLTTNGLLLSAALVIIYFMLNYWGVKLFARANSAITIFKFLIPGATILGLMFAG 205 A D TT G L+ AL+ ++F+LNY VK FA AN+ +++FKF++P ++G++F Sbjct: 124 AGSSDP--TTLGWLVQFALLCLFFVLNYRSVKTFAIANNLVSVFKFIVP-LLVIGVLFTF 180 Query: 206 FHKENFGEASTFAPYGWSAVLTAVSTSGIVFAFNGFQSPINLAGEARNPAKSVPFAVIGS 265 F NF + FAP+G S + AVS G++FA+ G I++A E +NP +++P A+I S Sbjct: 181 FKPANF-QVQGFAPFGLSGIEMAVSAGGVIFAYLGLTPIISVASEVKNPQRTIPIALILS 239 Query: 266 ILLALVIYVLLQIAYIGAVNPSDVMKGWSHFN--FASPFAELAIALNLNWLAILLYVDAF 323 +LL+ IYVLLQ A++G V + GW+ + A P+ ++A+AL + WLA L+ DA Sbjct: 240 VLLSTAIYVLLQTAFLGGVPTEMLANGWAGISKELALPYRDIALALGVGWLAYLVVADAV 299 Query: 324 VSPSGTGTTYMATTSRMIYAMERNNTMPKMFGNVHPFYGVPRQAMWFNLLVSFIFLFFFR 383 +SPSG G YM T R++Y + T K+F + G+PR A+W +S + F Sbjct: 300 ISPSGCGNIYMNATPRVVYGWAQTGTFFKIFTRIDEKSGIPRPALWLTFALSVFWTLPFP 359 Query: 384 GWSSLAAVISVATVISYLTGPISLMALRRAATDLERPLHIPGMKIIAPFAFVCASLILYW 443 W +L V+S A ++SY P+++ ALRR A + RP + GM ++ P +F+ A+LI+YW Sbjct: 360 SWEALINVVSAALILSYAVAPVTVAALRRNAPQMARPFRVKGMAVLGPLSFIIAALIVYW 419 Query: 444 AKWPLTGEIILLMVVALPVYFYFQ--AKSGFAGWGRDLKAAWWLVAYLPVMAILSLIGSK 501 + W ++ L ++ VY + + ++++ WL+ + V +LS +GS Sbjct: 420 SGWNTVSWLLGLQILMFVVYLLCARWVPTAHLNIKQQVRSSAWLIGFYAVTILLSKLGS- 478 Query: 502 QFGGHDLIPYGWDMVVVIAFSLVFYYWGVTSGYRSEYLDERSEHDE 547 FGG +I + D +VV A +L YYWG +G + + E DE Sbjct: 479 -FGGIGVIGHPLDTIVVAACALGIYYWGAATGVPAHLVRLEHEADE 523 Lambda K H 0.326 0.139 0.445 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1002 Number of extensions: 61 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 555 Length of database: 539 Length adjustment: 36 Effective length of query: 519 Effective length of database: 503 Effective search space: 261057 Effective search space used: 261057 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory