Align The fructose porter, FruA (fructose-1-P forming IIABC) (Delobbe et al. 1975) FruA is 39% identical to 4.A.2.1.1). fructose can be metabolized to Fru-1-P via this system as well as Fru-6-P by another PTS system (characterized)
to candidate GFF782 PS417_03975 FruA
Query= TCDB::P71012 (635 letters) >FitnessBrowser__WCS417:GFF782 Length = 569 Score = 423 bits (1088), Expect = e-123 Identities = 227/514 (44%), Positives = 331/514 (64%), Gaps = 23/514 (4%) Query: 125 MREEIRKQLLEAESEDAIIDIINQHDKDDDEEEEEEEAAPAPAGKGKILAVTACPTGIAH 184 M+ + K++ ++ A+ D+ + +E + A +I+A+TACPTG+AH Sbjct: 69 MQRFVGKRVFQSTPAQALADVDAVLRRGAEEAQVYVATQQAAENAPRIVAITACPTGVAH 128 Query: 185 TFMAADALKEKAKELGVEIKVETNGSSGIKHKLTAQEIEDAPAIIVAADKQVEMERFKGK 244 TFMAA+AL++ AK LG +++VET GS G + L+ Q I +A +++AAD +V ERF GK Sbjct: 129 TFMAAEALQQTAKRLGYDLQVETQGSVGARTPLSPQAIAEADVVLLAADIEVATERFAGK 188 Query: 245 RVLQVPVTAGIRRPQELIEKAMNQDAPIYQGSGGGSAASNDDEEAKGKSGSGIGNTFYKH 304 ++ + +++ + + KA+ + A + + G+ A K K+G YKH Sbjct: 189 KIYRCGTGIALKQSEATLNKALAEGA--VESAASGAVAK------KEKTG------VYKH 234 Query: 305 LMSGVSNMLPFVVGGGILVAISFFWGIHSADPNDPSYNTFAAALNFIGGDNALKLIVAVL 364 L++GVS MLP VV GG+L+A+SF +GI + + T AAAL +G D A L+V +L Sbjct: 235 LLTGVSFMLPMVVAGGLLIALSFMFGITAFEEK----GTLAAALKTVG-DQAFMLMVPLL 289 Query: 365 AGFIAMSIADRPGFAPGMVGGFMATQANAGFLGGLIAGFLAGYVVILLKKVFTFIPQSLD 424 AG+IA SIADRP APGM+GG +AT AGF+GG+ AGFLAGY V L+ + +PQSLD Sbjct: 290 AGYIAYSIADRPALAPGMIGGLLATTLGAGFIGGIFAGFLAGYCVKLITRAVQ-LPQSLD 348 Query: 425 GLKPVLIYPLFGIFITGVLMQFVVNTPVAAFMNFLTNWLESLGTGNLVLMGIILGGMMAI 484 LKP+LI PL TG+ M ++V PVA + LT +L ++GT N VL+GI+LGGMM + Sbjct: 349 ALKPILIIPLLASLFTGLAMIYLVGPPVARMLVGLTEFLNTMGTTNAVLLGILLGGMMCV 408 Query: 485 DMGGPLNKAAFTFGIAMIDAGNYAPHAAIMAGGMVPPLGIALATTIFRNKFTQRDREAGI 544 D+GGP+NKAA+ F + M+ A + AP AA MA GMVPP+G+ +AT + R KF Q +REAG Sbjct: 409 DLGGPINKAAYAFSVGMLAAHSGAPIAATMAAGMVPPIGMGIATFLARRKFAQTEREAGK 468 Query: 545 TCYFMGAAFVTEGAIPFAAADPLRVIPAAVVGAAVAGGLTEFFRVTLPAPHGGVFVAFI- 603 +G F++EGAIPFAA DPLRVIPA++ G A+AG L+ +F L APHGG+ V I Sbjct: 469 AAIILGMVFISEGAIPFAAKDPLRVIPASIAGGALAGALSMYFGCKLAAPHGGLAVLVIP 528 Query: 604 --TNHPMLYLLSIVIGAVVMAIILGIVKKPVTEK 635 NH +LYLL+IV G+++ ++ ++K+P ++ Sbjct: 529 NAMNHALLYLLAIVAGSLLTGLVYALIKRPEAQE 562 Score = 48.5 bits (114), Expect = 8e-10 Identities = 26/78 (33%), Positives = 41/78 (52%) Query: 171 KILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSGIKHKLTAQEIEDAPAIIV 230 K+ VTACP G+ + + A L A+ G VE + +L+ I+DA +++ Sbjct: 2 KLAIVTACPNGMVTSVLCARLLDAAAQRQGWSTSVEVVDVQRPERQLSQATIDDAEWVLL 61 Query: 231 AADKQVEMERFKGKRVLQ 248 + V+M+RF GKRV Q Sbjct: 62 VSSTPVDMQRFVGKRVFQ 79 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 810 Number of extensions: 36 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 635 Length of database: 569 Length adjustment: 37 Effective length of query: 598 Effective length of database: 532 Effective search space: 318136 Effective search space used: 318136 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory