Align C4-dicarboxylic acid transporter DauA; Dicarboxylic acid uptake system A (characterized)
to candidate GFF25 PS417_00130 SulP family inorganic anion transporter
Query= SwissProt::P0AFR2 (559 letters) >FitnessBrowser__WCS417:GFF25 Length = 530 Score = 209 bits (532), Expect = 2e-58 Identities = 156/511 (30%), Positives = 258/511 (50%), Gaps = 53/511 (10%) Query: 20 WKEKYTAARFTRDLIAGITVGIIAIPLAMALAIGSGVAPQYGLYTAAVAGIVIALTGGSR 79 W + T A RD + G++ ++A+P ++A A+ +G+ P+YGLY A + ++ L G S Sbjct: 15 WLPRQTRASVGRDAMVGLSGAVLALPQSIAYALIAGLPPEYGLYAAIIPVLIACLWGSSW 74 Query: 80 FSVSGPTAAFVVILY--------PVSQQFGLAGLLVATLLSGIFLILMGLARFGRLIEYI 131 + GPTAA ++LY P SQ + + +L+ T L+G+F L+G+ RFG L+ ++ Sbjct: 75 HLICGPTAAISIVLYASVSPLAVPGSQDY-ITLILLLTFLAGVFQWLLGMLRFGALVNFV 133 Query: 132 PVSVTLGFTSGIGITIGTMQIKDFLGLQM---AHVPEHYLQKV---GALFMALPTINVGD 185 SV LGFT G + I Q+ + LGL + A + L + G A + +G Sbjct: 134 SHSVVLGFTLGAAVVIALGQLPNLLGLDLPSQATAINNLLTLIHHSGEWDPASVILGLGT 193 Query: 186 AAIGIVTLGILVFWPRLGIRLPGHLPALLAGCAVMGIVNLLGGHVATIGSQFHYVLADGS 245 +G + ++ WP L L AL G V + + GHVA + S Sbjct: 194 LLVGALLKYLVPRWPTL-------LIALTLGSLVTWLWPAMFGHVALVSSF--------- 237 Query: 246 QGNGIPQLLPQLVLPWDLPNSEFTLTWDSIRTLLPAAFSMAMLGAIESLLCAVVLDGMTG 305 I +L P LP DL D I LLP+A ++ MLG + SL A L + Sbjct: 238 ----IGKLPPLSPLPMDL---------DVILRLLPSAVAVGMLGLVTSLSIARSLSVRSQ 284 Query: 306 TKHKANSELVGQGLGNIIAPFFGGITATAAIARSAANVRAGATSPISAVIHSILVILALL 365 AN E+ QG NI+ FF G + + RS + AGA SP++ V ++ V L L Sbjct: 285 QLLDANQEIRAQGFSNIVGGFFSGYLSAGSFTRSGLSYEAGACSPLAGVFSALWVALFAL 344 Query: 366 VLAPLLSWLPLSAMAALLLMVAWNMSEAHKVVDLLRHAPKDDIIVMLLCMSLTVLFDMVI 425 A L++ +P+ +MAA +L+++W + + + L R + + +++ L C++ T+L ++ Sbjct: 345 FGAALIAHIPIPSMAASILLISWGLVDRRGIRALFRVSRAEFVVMSLTCVA-TLLLELQT 403 Query: 426 AISVGIVLASLLFMRRIARMTRLAPVVVDVPD-DVLVLRVIGPLFFAAAEGLFTDLESRL 484 AI G++ + +++R ++ P V D D VLRV G +FF A+ L L+S L Sbjct: 404 AIYAGVLASLFFYLKRTSQ-----PRVQQWRDGDEDVLRVGGSIFFGASHYLQVRLQS-L 457 Query: 485 EGKRIVILKWDAVPVLDAGGLDAFQRFVKRL 515 +GKR+VI + + +D G++ + +RL Sbjct: 458 QGKRVVI-EAQQINFIDYSGVEMLHQEARRL 487 Lambda K H 0.328 0.142 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 635 Number of extensions: 41 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 530 Length adjustment: 35 Effective length of query: 524 Effective length of database: 495 Effective search space: 259380 Effective search space used: 259380 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory