Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate GFF178 PS417_00895 succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__WCS417:GFF178 Length = 480 Score = 380 bits (977), Expect = e-110 Identities = 199/465 (42%), Positives = 278/465 (59%), Gaps = 2/465 (0%) Query: 10 QLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHE 69 Q IDG WVDA +G+T+ V NPATG+ +G V G A+ RA+ AA AWR + A E Sbjct: 12 QAFIDGAWVDADNGQTLKVNNPATGEILGTVPKMGAAETRRAIEAADKALPAWRALTAKE 71 Query: 70 RAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIV 129 RA +R+ L+ E D + +LMT EQGKPL EA+ E++ AA IEWFA+E +R+YG ++ Sbjct: 72 RANKLRRWFELLIENQDDLGRLMTLEQGKPLAEAKGEIVYAASFIEWFAEEAKRIYGDVI 131 Query: 130 PPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAA 189 P + V+K+P+G AA TPWNFP + RK ALA GC+ ++K +TP S A Sbjct: 132 PGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIKPASQTPFSALA 191 Query: 190 LLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKR 249 L+ AG+P GV+ +V G +I L +P++RK++FTGST +G+QL + +K+ Sbjct: 192 LVELAHRAGIPKGVLSVVTGSAGDIGGELTSNPIVRKLSFTGSTEIGRQLMAECAKDIKK 251 Query: 250 ATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVK 309 ++ELGG+AP IV +DAD+ AV+ A +K+RN GQ C+ R + +S+ D F L Sbjct: 252 VSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDSVYDAFAEKLKV 311 Query: 310 HAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPT 369 LK+GNGLEEGTT G L + + + + I +A K GA++ GG+ + EGNFF PT Sbjct: 312 AVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAGGKVM--EGNFFEPT 369 Query: 370 VIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQ 429 ++ NVP DA V E FGP+A + F E IA +N FGLA Y + R V + + Sbjct: 370 ILTNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYARDLGRVFRVAE 429 Query: 430 RLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTK 474 LE GM+ +N PFGG+K SG G EG +E YL K Sbjct: 430 ALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIK 474 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 602 Number of extensions: 21 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 480 Length adjustment: 34 Effective length of query: 447 Effective length of database: 446 Effective search space: 199362 Effective search space used: 199362 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory