Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate GFF5142 PS417_26340 betaine-aldehyde dehydrogenase
Query= SwissProt::P42236 (488 letters) >FitnessBrowser__WCS417:GFF5142 Length = 490 Score = 337 bits (864), Expect = 6e-97 Identities = 184/477 (38%), Positives = 286/477 (59%), Gaps = 6/477 (1%) Query: 13 FINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEAKTAWRKLTGAER 72 +I+G + + S + NPA+ +++ VQ +T EDVERAV +A + + W +T ER Sbjct: 10 YIDGGYTDAGSDATFEAINPAN-GEVLAQVQRATKEDVERAVVSAEKGQKIWAAMTAMER 68 Query: 73 GQYLYKTADIMEQRLEEIAACATREMGKTLPEAKG-ETARGIAILRYYAGEGMRKTGDVI 131 + L + DI+ +R +E+AA T + GK E K + G +L YYAG G+ I Sbjct: 69 SRILRRAVDILRERNDELAALETLDTGKAFSETKYVDIVTGADVLEYYAGLVPAIEGEQI 128 Query: 132 PSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATETAVTCAK 191 P D + ++T R PLGVV I WN+P+ I +WK APAL GN ++ KP+ T++T K Sbjct: 129 PLRDT-SFVYTRREPLGVVAGIGAWNYPIQIALWKSAPALAAGNAMIFKPSEVTSLTTLK 187 Query: 192 IIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGKIIGQAALARGAK 251 + + EAG+PAGV N++TG G VG L EH + V+FTG GK + +A + K Sbjct: 188 LAEIYTEAGVPAGVFNVLTGSGREVGTWLTEHPRIEKVSFTGGTDTGKKVMASASSSSLK 247 Query: 252 -YQLEMGGKNPVIVADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQSGIYERFKEKLL 310 +E+GGK+P+IV +DADL+ AA+ + F S+GQ CT +RV V + F+ K++ Sbjct: 248 EVTMELGGKSPLIVFEDADLDRAADIAMMANFYSSGQVCTNGTRVFVPKHLQAAFEAKIV 307 Query: 311 QRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGEKLENGKYQNGY 370 +R I +G+ ++ GP+ S +++ L YI KGK+EGA +L GG++L +G++ G Sbjct: 308 ERVARIRVGNPQDDNTNFGPLVSFAHMESVLGYIAKGKEEGARVLCGGDRLTDGEFAKGA 367 Query: 371 YVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGLSASIFTENIGRM 430 +V P +F + T EMTI +EEIFGPV++++ ++ EE + AND FGL+A + T+++ R Sbjct: 368 FVAPTVFTDCTDEMTIVREEIFGPVMSILTYETEEEVIRRANDTDFGLAAGLVTKDLNRA 427 Query: 431 LSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHSREQGEAAKDFFTAIKTVFVK 487 I +++AG+ INA + + P GG KQS RE G ++ + FT IK+V V+ Sbjct: 428 HRVIHQLEAGICWINAWGES-DAKMPVGGYKQSGV-GRENGISSLNNFTRIKSVQVE 482 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 598 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 490 Length adjustment: 34 Effective length of query: 454 Effective length of database: 456 Effective search space: 207024 Effective search space used: 207024 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory