GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gudD in Pseudomonas simiae WCS417

Align Probable glucarate dehydratase; GDH; GlucD; EC 4.2.1.40 (uncharacterized)
to candidate GFF4626 PS417_23670 muconate cycloisomerase

Query= curated2:Q9RDE9
         (431 letters)



>FitnessBrowser__WCS417:GFF4626
          Length = 375

 Score =  112 bits (281), Expect = 1e-29
 Identities = 115/413 (27%), Positives = 173/413 (41%), Gaps = 60/413 (14%)

Query: 5   LTITAVHLTPILVADPPLLNTQ--GVHQPYTPRL-IVEVETADGVTGVGE-------TYG 54
           + I A+     ++ D P L      +H      L I+ +  ADG+ G+GE       +YG
Sbjct: 1   MPICAIESIDTIIVDLPTLRPHKLAMHTMQNQTLVIIRLRCADGIEGIGEATTIGGLSYG 60

Query: 55  ----DAKYLELARPFAAKLVGRQVSDLNGLFTLADEVAVDSSRVFGQVDVGGLRGVQTAD 110
               D+  + + R FA  L+G+  S++N      +                 +RG   A 
Sbjct: 61  NESPDSIKVNIDRHFAPLLIGQDASNINAAMLRLER---------------SIRGNTFAK 105

Query: 111 KLRLSVVSGFEVACLDALGKALGLPVHALLGGKVRDAVEYSAYLFYKWADHPEGVASEKD 170
                  SG E A LDALGK L LPV  LLGG+VRDA+  +  L            +EKD
Sbjct: 106 -------SGIESALLDALGKRLNLPVSELLGGRVRDALPVAWTL--------ASGNTEKD 150

Query: 171 DWGAAVDPAGVVAQARAFTERYGFTSFKLKGGVFPPEEEIAAVKALAEAFPGH-PLRLDP 229
                      +A+A    +      FKLK G      ++A V A+ +A      +R+D 
Sbjct: 151 -----------IAEAEKMLDLRRHRLFKLKIGAGEVSHDLAHVIAIKKALGDRASVRVDV 199

Query: 230 NGAWSVETSLKVAAELGD-VLEYLEDPAL--GTPAMAEVAAKTGVPLATNMCVTTFAEIQ 286
           N AW    +L+    LGD  ++ +E P        MA +   +  P+  +  +    +  
Sbjct: 200 NQAWDEAVALRACKVLGDNGIDLIEQPISRNNRGGMARLNLSSPAPIMADESIECVEDAF 259

Query: 287 EAFTKGAVQVVLSDHHYWGGLRNTQQLAAVCRTFGVGVSMHSNTHLGISLAAMTHVAATV 346
               +GA  V        GG R   + AA+    G+G+   +    GI   A  H   T+
Sbjct: 260 NLAREGAASVFALKIAKNGGPRAVLRTAAIAEAAGIGLYGGTMLEGGIGTLASAHAFLTL 319

Query: 347 PDLHHACDSHYP-WQSEDVLTERLAFDGGKVAVSDAPGLGVALDRERLAFLHR 398
             L    +   P   +ED+LTE   +   ++ VS APGLG+A+D ERLAF  R
Sbjct: 320 NKLAWDTELFGPLLLTEDILTEPPVYRDFQLHVSTAPGLGLAIDEERLAFFRR 372


Lambda     K      H
   0.319    0.135    0.410 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 340
Number of extensions: 17
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 431
Length of database: 375
Length adjustment: 31
Effective length of query: 400
Effective length of database: 344
Effective search space:   137600
Effective search space used:   137600
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory