Align Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase (EC 2.3.1.168) (characterized)
to candidate GFF3431 PS417_17555 branched-chain alpha-keto acid dehydrogenase subunit E2
Query= reanno::pseudo13_GW456_L13:PfGW456L13_3542 (425 letters) >lcl|FitnessBrowser__WCS417:GFF3431 PS417_17555 branched-chain alpha-keto acid dehydrogenase subunit E2 Length = 419 Score = 680 bits (1754), Expect = 0.0 Identities = 358/426 (84%), Positives = 383/426 (89%), Gaps = 8/426 (1%) Query: 1 MGTHVIKMPDIGEGIAEVELSVWHVKVGDMVVEDQVLADVMTDKAMVDIPSPVHGKVIAL 60 MGTHVIKMPDIGEGIAEVELSVWHVKVGDMVVEDQVLADVMTDKAMVDIPSPVHGKVI+L Sbjct: 1 MGTHVIKMPDIGEGIAEVELSVWHVKVGDMVVEDQVLADVMTDKAMVDIPSPVHGKVISL 60 Query: 61 GGQPGEVMAVGSVLISIEVEGAGNVKESAQPAPVVKEAPVAATKVETVVESKPVAAPA-P 119 GG+PGEVMAVGS+LISIEVEGAGN KE AP KE P AA VE + PVA + P Sbjct: 61 GGEPGEVMAVGSILISIEVEGAGNAKE----APAAKETPKAAPVVEA--KPAPVAVESKP 114 Query: 120 KAAVCQGPMVAREADERPLASPAVRKHALDLGIQLRLVRGTGPAGRVLHEDLDAYLAQGQ 179 V P VAR ADERPLASPAVRKHALD GIQLRLV+G+GPAGR+LHEDLDAYL QG Sbjct: 115 APVVATQPPVARAADERPLASPAVRKHALDAGIQLRLVQGSGPAGRILHEDLDAYLQQGA 174 Query: 180 SNASAPVAAAYAQRTDEQQIPVIGMRRKIAQRMQDATQRAAHFSYVEEIDVTAVEELRAH 239 S +S YA+R E+QIPVIGMRRKIAQRMQDAT+RAAHFSYVEEIDVTA++ELR H Sbjct: 175 SKSST-ATNPYAERNTEEQIPVIGMRRKIAQRMQDATRRAAHFSYVEEIDVTALDELRVH 233 Query: 240 LNEKHGATRGKLTLLPFLVRALVVALRDFPQINARYDDEAQVITRLGAVHVGIATQADIG 299 LNEKHGATRGKLTLLPF+VRA+VVALRDFPQINARYDDEAQVITRLGAVHVG+ATQ+D+G Sbjct: 234 LNEKHGATRGKLTLLPFIVRAMVVALRDFPQINARYDDEAQVITRLGAVHVGVATQSDVG 293 Query: 300 LMVPVVRHAEARSLWDSAAEISRLATAARNGKASRDELSGSTITLTSLGALGGIVSTPVL 359 LMVPVVRHAEARSLW +A EI+RLATAARNGKASRDELSGSTITLTSLGALGGIVSTPVL Sbjct: 294 LMVPVVRHAEARSLWGNAEEIARLATAARNGKASRDELSGSTITLTSLGALGGIVSTPVL 353 Query: 360 NLPEVAIVGVNKIVERPMVIKGQIVIRKMMNLSSSFDHRVVDGMDAALFIQAIRGLLEQP 419 NLPEVAIVGVN+IVERPMVIKGQIV+RKMMNLSSSFDHRVVDGMDAA FIQAIRGLLEQP Sbjct: 354 NLPEVAIVGVNRIVERPMVIKGQIVVRKMMNLSSSFDHRVVDGMDAAQFIQAIRGLLEQP 413 Query: 420 ATLFVE 425 A+LF+E Sbjct: 414 ASLFLE 419 Lambda K H 0.318 0.133 0.368 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 650 Number of extensions: 13 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 425 Length of database: 419 Length adjustment: 32 Effective length of query: 393 Effective length of database: 387 Effective search space: 152091 Effective search space used: 152091 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory