Align methylcrotonoyl-CoA carboxylase (subunit 2/2) (EC 6.4.1.4) (characterized)
to candidate GFF5513 PS417_28215 pyruvate carboxylase subunit A
Query= BRENDA::Q9I299 (655 letters) >FitnessBrowser__WCS417:GFF5513 Length = 471 Score = 406 bits (1044), Expect = e-117 Identities = 213/466 (45%), Positives = 298/466 (63%), Gaps = 3/466 (0%) Query: 8 IQRLLVANRGEIACRVMRSARALGIGSVAVHSDIDRHARHVAEADIAVDLGGAKPADSYL 67 I+++L+ANRGEIA R++R+ +GI SVAV+SD DRHA HV AD A +G A+P YL Sbjct: 2 IKKILIANRGEIAVRIVRACAEMGIRSVAVYSDADRHALHVKRADEAHSIG-AEPLAGYL 60 Query: 68 RGDRIIAAALASGAQAIHPGYGFLSENADFARACEEAGLLFLGPPAAAIDAMGSKSAAKA 127 +++ A+ +G A+HPGYGFLSENA+ A C E G+ F+GP A I MG K+ A+ Sbjct: 61 NPRKLVNLAVETGCDALHPGYGFLSENAELADICAERGIKFIGPSAEVIRRMGDKTEARR 120 Query: 128 LMEEAGVPLVPGYHGEAQDLETFRREAGRIGYPVLLKAAAGGGGKGMKVVEREAELAEAL 187 M +AGVP+ PG G D+ E RIGYPV+LKA +GGGG+G++ EL +A Sbjct: 121 SMIKAGVPVTPGTEGNVADIHEALTEGDRIGYPVMLKATSGGGGRGIRRCNSREELEQAF 180 Query: 188 SSAQREAKAAFGDARMLVEKYLLKPRHVEIQVFADRHGHCLYLNERDCSIQRRHQKVVEE 247 EA AFG A + +EK ++ P+H+E Q+ D G+ ++L ERDCSIQRR+QK++E Sbjct: 181 PRVISEATKAFGSAEVFLEKCIVNPKHIEAQILGDSFGNVVHLFERDCSIQRRNQKLIEI 240 Query: 248 APAPGLGAELRRAMGEAAVRAAQAIGYVGAGTVEFLLDERGQFFFMEMNTRLQVEHPVTE 307 AP+P L E R +G+ +VRAA+A+GY AGTVEFLL E G+ +FMEMNTR+QVEH +TE Sbjct: 241 APSPQLTPEQRAYIGDLSVRAAKAVGYENAGTVEFLLAE-GEVYFMEMNTRVQVEHTITE 299 Query: 308 AITGLDLVAWQIRVARGEALPLTQEQVPLNGHAIEVRLYAEDPEGDFLPASGRLMLYREA 367 ITG+D+V QIR+A G L + QE + G A++ R+ AEDP+ +FLP+ G++ Y A Sbjct: 300 EITGIDIVREQIRIASGLPLSVKQEDIQHRGFALQFRINAEDPKNNFLPSFGKITRY-YA 358 Query: 368 AAGPGRRVDSGVREGDEVSPFYDPMLAKLIAWGETREEARQRLLAMLAETSVGGLRTNLA 427 GPG R D+ + G + PFYD M KL+ W T EEA R L L + + G++T A Sbjct: 359 PGGPGVRTDTAIYTGYTIPPFYDSMCLKLVVWALTWEEAMDRGLRALDDMRLQGVKTTAA 418 Query: 428 FLRRILGHPAFAAAELDTGFIARHQDDLLPAPQALPEHFWQAAAEA 473 + + IL +P F + + +T F+ H + + + PE A A A Sbjct: 419 YYQEILRNPEFRSGQFNTSFVESHPELTNYSIKRKPEELALAIAAA 464 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 704 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 655 Length of database: 471 Length adjustment: 36 Effective length of query: 619 Effective length of database: 435 Effective search space: 269265 Effective search space used: 269265 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory