Align methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate GFF583 PS417_02965 acetyl-CoA carboxylase
Query= BRENDA::Q42523 (734 letters) >lcl|FitnessBrowser__WCS417:GFF583 PS417_02965 acetyl-CoA carboxylase Length = 453 Score = 409 bits (1052), Expect = e-118 Identities = 213/452 (47%), Positives = 293/452 (64%), Gaps = 6/452 (1%) Query: 31 MKPKEQCIEKILVANRGEIACRIMRTAKRLGIQTVAVYSDADRDSLHVKSADEAVRIGPP 90 +KP ++ ++K+L+ANRGEIA RI+R K GI+TVAVYS AD + +HVK ADE++ IGPP Sbjct: 2 LKPAKK-LQKVLIANRGEIALRILRACKEEGIKTVAVYSTADTELMHVKLADESICIGPP 60 Query: 91 SARLSYLSGVTIMEAAARTGAQAIHPGYGFLSESSDFAQLCEDSGLTFIGPPASAIRDMG 150 A SYL I+ AA TGA IHPGYGFL+E++DFA+ E SG FIGP A IR MG Sbjct: 61 LATNSYLKVSNIIAAAEVTGADGIHPGYGFLAENADFAEQVEKSGFAFIGPKAETIRLMG 120 Query: 151 DKSASKRIMGAAGVPLVPGYHGH-EQDIDHMKSEAEKIGYPIIIKPTHGGGGKGMRIVQS 209 DK ++K M AAGVP VPG G +D + ++GYP+IIK GGGG+GMR+V Sbjct: 121 DKVSAKDAMIAAGVPTVPGSDGPLPEDEETALRIGREVGYPVIIKAAGGGGGRGMRVVHK 180 Query: 210 GKDFADSFLGAQREAAASFGVNTILLEKYITRPRHIEVQIFGDKHGNVLHLYERDCSVQR 269 +D ++ + EA A FG + LEKY+T PRH+EVQ+ D G+ +HL +RDCS+QR Sbjct: 181 EEDLIEAAKQTRSEAGAWFGNPMVYLEKYLTNPRHVEVQVLSDGQGHAIHLGDRDCSLQR 240 Query: 270 RHQKIIEEAPAPNISEKFRANLGQAAVSAARAVGYYNAGTVEFIVDTESDQFYFMEMNTR 329 RHQK++EEAPAP + EK R + V A + Y AGT EF+ E+ +FYF+EMNTR Sbjct: 241 RHQKVLEEAPAPGLDEKARQEVLARCVKACIDINYRGAGTFEFLY--ENGRFYFIEMNTR 298 Query: 330 LQVEHPVTEMIVGQDLVEWQIRVANGEPLPLSQSEVPMSGHAFEARIYAENVPKGFLPAT 389 +QVEHPV+EM+ G D+V+ + +A G PL +Q +V M GH+ E RI AE+ PK F+P+ Sbjct: 299 VQVEHPVSEMVTGIDIVKEMLSIAAGNPLSFTQDDVKMHGHSLECRINAED-PKTFIPSP 357 Query: 390 GVLNHYRPVAVSPSVRVETGVEQGDTVSMHYDPMIAKLVVWGGNRGEALVKLKDCLSNFQ 449 G++ H+ VRV++ + G V +YD +I KL+ WG R EA+ ++++ L Sbjct: 358 GLVKHFHAPG-GNGVRVDSHLYSGYKVPSNYDSLIGKLITWGATRDEAMARMRNALDEIV 416 Query: 450 VAGVPTNINFLQKLASHKEFAVGNVETHFIEH 481 V G+ TNI + L + F G V H++EH Sbjct: 417 VDGIKTNIPLHRDLVRDEGFCEGGVNIHYLEH 448 Lambda K H 0.316 0.132 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 889 Number of extensions: 42 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 734 Length of database: 453 Length adjustment: 36 Effective length of query: 698 Effective length of database: 417 Effective search space: 291066 Effective search space used: 291066 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory