Align alginate biosynthesis protein AlgA; EC 2.7.7.13; EC 5.3.1.8 (characterized)
to candidate GFF944 PS417_04790 mannose-1-phosphate guanylyltransferase
Query= CharProtDB::CH_121570 (483 letters) >FitnessBrowser__WCS417:GFF944 Length = 483 Score = 959 bits (2479), Expect = 0.0 Identities = 472/483 (97%), Positives = 480/483 (99%) Query: 1 MIPVILSGGSGSRLWPLSRKQFPKQFLALTGEHTLFQQTLERLVFEGMDTPIVVCNKDHR 60 MIPVILSGGSGSRLWPLSRKQFPKQFLALTGEHTLFQQTLERLVFEGMD+PIVVCNKDHR Sbjct: 1 MIPVILSGGSGSRLWPLSRKQFPKQFLALTGEHTLFQQTLERLVFEGMDSPIVVCNKDHR 60 Query: 61 FIVNEQLANRKLECQRILMEPFGRNTAPAVALTAMMLVNEGRDELMLVLPADHVIDDQKA 120 FIVNEQLA RKLE QRILMEPFGRNTAPAVALTAMMLVNEGRDELMLVLPADHVIDDQKA Sbjct: 61 FIVNEQLAARKLESQRILMEPFGRNTAPAVALTAMMLVNEGRDELMLVLPADHVIDDQKA 120 Query: 121 LQRALALATVAAERGEMVLFGVPATRPETGYGYIKSTNDSLLPEGVSRVQQFVEKPDEKR 180 LQRALALATVAAERGEMVLFGVPATRPETGYGYIKSTNDSLLPEGVSRV+QFVEKP+EKR Sbjct: 121 LQRALALATVAAERGEMVLFGVPATRPETGYGYIKSTNDSLLPEGVSRVEQFVEKPNEKR 180 Query: 181 AVEFVKSGGYFWNSGMFLFRASRFLEELKKHDPDIYDTCVLTLERSEQTADTVTLDDATF 240 A+EFVKSGGYFWNSGMFLFRASRFLEELKKHDPDIYDTC+LTLERSEQTADTV+ D+ATF Sbjct: 181 AMEFVKSGGYFWNSGMFLFRASRFLEELKKHDPDIYDTCLLTLERSEQTADTVSFDEATF 240 Query: 241 ACCPDNSIDYAVMEKTQRACVVPLSAGWSDVGCWASLWAVNDKDIHGNVSKGDVVIQDSR 300 ACCPDNSIDYAVMEKTQRACVVPLSAGWSDVGCWASLWAVNDKD+HGNVSKGDVVIQDSR Sbjct: 241 ACCPDNSIDYAVMEKTQRACVVPLSAGWSDVGCWASLWAVNDKDVHGNVSKGDVVIQDSR 300 Query: 301 NCMIHGNGKLVSVIGLDNIVVVETKDAMMIAHKDKVQGVKQMVSTLNDQGRSETQNHCEV 360 NCMIHGNGKLVSVIGLDNIVVVETKDAMMIAHKDKVQGVKQMVSTLNDQGRSETQNHCEV Sbjct: 301 NCMIHGNGKLVSVIGLDNIVVVETKDAMMIAHKDKVQGVKQMVSTLNDQGRSETQNHCEV 360 Query: 361 YRPWGSYDSVDMGGRFQVKHISVKPGACLSLQMHHHRAEHWIVVSGTAEVTCDENVFLLT 420 YRPWGSYDSVDMGGRFQVKHISVKPGACLSLQMHHHRAEHWIVVSGTAEVTCDENVFLLT Sbjct: 361 YRPWGSYDSVDMGGRFQVKHISVKPGACLSLQMHHHRAEHWIVVSGTAEVTCDENVFLLT 420 Query: 421 ENQSTYIPIASVHRLRNPGKIPLEIIEVQSGSYLGEDDIERFEDIYGRSTPVERGVSVKT 480 ENQSTYIPIASVHRLRNPGKIPLEIIEVQSGSYLGEDDIERFEDIYGRSTPVERGVSVKT Sbjct: 421 ENQSTYIPIASVHRLRNPGKIPLEIIEVQSGSYLGEDDIERFEDIYGRSTPVERGVSVKT 480 Query: 481 IAQ 483 IAQ Sbjct: 481 IAQ 483 Lambda K H 0.319 0.135 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 943 Number of extensions: 24 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 483 Length adjustment: 34 Effective length of query: 449 Effective length of database: 449 Effective search space: 201601 Effective search space used: 201601 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory