Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate GFF2673 PS417_13635 D-ribose transporter ATP-binding protein
Query= TCDB::B8H229 (515 letters) >FitnessBrowser__WCS417:GFF2673 Length = 510 Score = 393 bits (1009), Expect = e-114 Identities = 222/512 (43%), Positives = 329/512 (64%), Gaps = 16/512 (3%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAAD-AGTVT 61 LL++ +SK+F G+R L V L V GE+HAL+GENGAGKSTL+KILS A+ AD G + Sbjct: 6 LLEMQGISKTFNGLRVLKTVGLKVYPGEIHALMGENGAGKSTLMKILSGAYQADPGGEIR 65 Query: 62 FAGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRADA 121 AGQ++ P P + LGIA IYQE +L P LSVAEN+YLGRE RR +D + A Sbjct: 66 IAGQLI-PTFDPATAKALGIAVIYQELSLCPNLSVAENIYLGRELRRGWTIDRKGMEAGC 124 Query: 122 QALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHA 181 +L LG P V L++AE+Q+VEIA+A+ +A++++MDEPT LS RE DRL A Sbjct: 125 IEVLQRLGAEFTPATRVSSLSIAERQLVEIARALHAHAKILVMDEPTTPLSSRETDRLFA 184 Query: 182 IIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHV 241 +I L+++ +++IY+SHR+ E+ A+ DR +V+RDG ++ + +V++MVGR + Sbjct: 185 LIKQLRSQGLAIIYISHRMAEIYALSDRVSVLRDGHYIGELTRDALSAEALVKMMVGRDL 244 Query: 242 E--FERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRT 299 +++ PG VV++V + +R SF GE++G+AGLVGAGRT Sbjct: 245 SGFYKKEHAAYNPGNVVMRVRDMADGK-------RVRHCSFDLHAGEVLGIAGLVGAGRT 297 Query: 300 DLARLIFGADPIAAGRVLVDDKPLR-LRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNL 358 +LARLIF ADP +G + V K + LR+P DAI+AG++ + EDRK QG FLD S+ N+ Sbjct: 298 ELARLIFAADPRTSGTLEVVGKAVTPLRTPADAIRAGVVYLTEDRKAQGLFLDMSVADNI 357 Query: 359 SLPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMA 418 ++ + + G +D + L I++A + G LSGGNQQKVLL R + Sbjct: 358 NVCACVPDAHAGGVLDRDHALQRSNDAIKSLSIRVASGKVNAGALSGGNQQKVLLARLLE 417 Query: 419 LTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREG 478 + P VLI+DEPTRG+DIG+K+E++++++ LA G+ +VVISSEL E++ DR+++ REG Sbjct: 418 VKPHVLILDEPTRGVDIGSKSEIYRIINQLAQAGIGIVVISSELPEIIGTCDRVLIMREG 477 Query: 479 VIVADL---DAQTATEEGLMAYMATGTDRVAA 507 +VA++ Q ++E ++ +ATG D+V A Sbjct: 478 QLVAEVGGASGQAISQERIID-LATGGDQVVA 508 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 723 Number of extensions: 36 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 510 Length adjustment: 35 Effective length of query: 480 Effective length of database: 475 Effective search space: 228000 Effective search space used: 228000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory