Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate GFF4308 PS417_22065 long-chain fatty acid--CoA ligase
Query= BRENDA::D3GE78 (556 letters) >lcl|FitnessBrowser__WCS417:GFF4308 PS417_22065 long-chain fatty acid--CoA ligase Length = 563 Score = 196 bits (499), Expect = 2e-54 Identities = 155/524 (29%), Positives = 249/524 (47%), Gaps = 33/524 (6%) Query: 46 LTTHDLRLWSQRLAAGLRK-SGLQRGDRVLLFSGNDLFFPVVFLGVIMAGGIFTGANPTF 104 +T +L S AA L++ + L+ GDR+ + N L +PV G I AG I NP + Sbjct: 50 ITYGELYELSGAFAAYLQQHTDLKPGDRIAVQLPNVLQYPVAVFGAIRAGLIVVNTNPLY 109 Query: 105 VARELAYQLQDSGATYLLCASNSLETGLEAAKQAKLPQSHIFAYDTSIYDGVTNPQKGCA 164 ARE+ +Q DSGA L+C +N + + + H+ T + D + P K Sbjct: 110 TAREMEHQFNDSGAKALVCLANMAHLAEKVVPKTAV--KHVIV--TEVAD-LLPPLKRLL 164 Query: 165 ------YWSDLLASEEEGAAFTWDEL----------STPALSSTTLALNYSSGTTGRPKG 208 Y ++ + A ++++ SS L Y+ GTTG KG Sbjct: 165 INSVIKYVKKMVPAYHLPNAIKFNDVLAKGHGQPVSDASPTSSDVAVLQYTGGTTGVAKG 224 Query: 209 VEISHRNYVANMLQYCHTASLHPDYKARLERSRWLCFLPMYHAMAQNIF-IAAALYRATP 267 ++HRN VANMLQ + + + + LP+YH A +A L Sbjct: 225 AMLTHRNLVANMLQCKALMGSNLNEGCEI----LITPLPLYHIYAFTFHCMAMMLIGNHN 280 Query: 268 VYIMSKFDFVKMLEYTQRFRITDFILVPPVVVALAKHPAVGQYDLSSVELVGSGAAPLGR 327 + I + D M++ +++ + F+ + + VAL + A + D S++++ SG L Sbjct: 281 ILISNPRDLPAMVKELSKWKFSGFVGLNTLFVALCNNEAFRKLDFSALKVTLSGGMALQL 340 Query: 328 EVCEEVEKLWPPGKINIKQGWGMTEATCSVTGWNPAEISTSASVGELNANCEAKIMFDGV 387 E + + G I +G+GMTE T V NP + ++G + K++ D Sbjct: 341 AAAERWKAVTGCG---ICEGYGMTE-TSPVATVNPIQHIQIGTIGIPVPSTVCKVIADDG 396 Query: 388 EVKERNSRGELWVRAPNVMKGYWRNEKATKETKTEDGWLLTGDIAFVDDDGKFHVVDRMK 447 GEL V+ P VMKGYW+ + AT E +GWL TGDIA + DG +VDR K Sbjct: 397 TELALGETGELCVKGPQVMKGYWQRQDATDEMLDSEGWLKTGDIAIIQPDGYMRIVDRKK 456 Query: 448 ELIKVKGNQVAPAELEALLLEHPAISDVAVIGVV-INNDERPRAYVVLRPGQSATANEIA 506 ++I V G V P ELE +L P + A IGV + E + ++V++PG + T ++ Sbjct: 457 DMILVSGFNVYPNELEDVLAGLPGVLQCAAIGVPDEKSGEHIKLFIVVKPGATLTKEQVM 516 Query: 507 HYLDNKVSAFKRITGGVVFLEAIPKNPSGKILRMKLREQAKEEL 550 ++ V+A+K + V F +A+P GKILR +LR++ ++L Sbjct: 517 EHMRANVTAYK-VPKAVEFRDALPTTNVGKILRRELRDEELKKL 559 Lambda K H 0.319 0.134 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 645 Number of extensions: 27 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 556 Length of database: 563 Length adjustment: 36 Effective length of query: 520 Effective length of database: 527 Effective search space: 274040 Effective search space used: 274040 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory