Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate GFF3406 PS417_17430 aldehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >lcl|FitnessBrowser__WCS417:GFF3406 PS417_17430 aldehyde dehydrogenase Length = 506 Score = 353 bits (907), Expect = e-102 Identities = 209/484 (43%), Positives = 287/484 (59%), Gaps = 22/484 (4%) Query: 40 FINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDAS 99 +I E+ +S + F +P TGEVI + + D+DKA+ AA AA W + Sbjct: 22 YIGGEFVAPLSGEYFTNTSPVTGEVIAEFPRSNAADIDKALDAAHAA---ADAWGKTSPQ 78 Query: 100 HRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGK 159 R +L ++AD IE+ LA E+ DNGK + D+ + RY+AG G Sbjct: 79 DRSLVLLKIADRIEQHLEVLAVTESWDNGKAVRETLNADVPLAADHFRYFAGCIRAQEGG 138 Query: 160 TIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTAL 219 I+ +Y HEP+GV GQIIPWNFPLLM AWKL PALA GN +V+K AEQTPL+ + Sbjct: 139 AAEINEHTAAYHFHEPLGVVGQIIPWNFPLLMAAWKLAPALAAGNCIVLKPAEQTPLSIM 198 Query: 220 YVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSNL 279 A LI + PPGV+NIV GFG AG A+A+ + + K+AFTGST IG I AA + NL Sbjct: 199 VFAELINDL-LPPGVLNIVQGFGREAGEALATSKRIAKIAFTGSTPIGAHIMHAA-AENL 256 Query: 280 KRVTLELGGKSPNIIMSD---ADMDWAVEQAHFAL---FFNQGQCCCAGSRTFVQEDIYD 333 T+ELGGKSPNI D A+ + +E+A L FFNQG+ C SR VQE IYD Sbjct: 257 IPSTVELGGKSPNIFFEDIMQAEPQF-IEKAAEGLVLAFFNQGEVCTCPSRALVQESIYD 315 Query: 334 EFVERSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGGIAAD 393 +F++ + + GNP D++T G Q E Q+ KIL Y+ ++EGA+LL GG AA+ Sbjct: 316 DFMKVVMKKIVKIKRGNPLDTETMVGAQASEQQYDKILSYLKIAQEEGAELLTGG--AAE 373 Query: 394 R-------GYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAA 446 R GY+IQPT+ + M + +EEIFGPV+ I FK E + AN+S +GL A Sbjct: 374 RLEGDLSSGYYIQPTLLKG-HNKMRVFQEEIFGPVVGITTFKDEAEALAIANDSEFGLGA 432 Query: 447 AVFTKDLDKANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVK 506 ++T+D+++A + +A++AG VW NCY ++ A + FGGYK SG GRE + L Y + K Sbjct: 433 GLWTRDINRAYRMGRAIKAGRVWTNCYHLYPAHAAFGGYKKSGVGRENHKMMLDHYQQTK 492 Query: 507 TVTV 510 + V Sbjct: 493 NLLV 496 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 620 Number of extensions: 22 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 506 Length adjustment: 35 Effective length of query: 482 Effective length of database: 471 Effective search space: 227022 Effective search space used: 227022 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory