Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate GFF178 PS417_00895 succinate-semialdehyde dehydrogenase
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >FitnessBrowser__WCS417:GFF178 Length = 480 Score = 906 bits (2341), Expect = 0.0 Identities = 457/480 (95%), Positives = 466/480 (97%) Query: 1 MQLKDTQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 MQLKD QLFRQQAFIDGAWVDADNGQT+KVNNPATGEILGTVPKMGAAETRRAIEAADKA Sbjct: 1 MQLKDAQLFRQQAFIDGAWVDADNGQTLKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 Query: 61 LPAWRALTAKERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFA 120 LPAWRALTAKERA KLRRW+EL+IENQDDL RLMTLEQGKPLAEAKGEIVYAASFIEWFA Sbjct: 61 LPAWRALTAKERANKLRRWFELLIENQDDLGRLMTLEQGKPLAEAKGEIVYAASFIEWFA 120 Query: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMV+K Sbjct: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIK 180 Query: 181 PASQTPFSAFALAELAQRAGIPAGVFSVVSGSAGDIGSELTSNPIVRKLSFTGSTEIGRQ 240 PASQTPFSA AL ELA RAGIP GV SVV+GSAGDIG ELTSNPIVRKLSFTGSTEIGRQ Sbjct: 181 PASQTPFSALALVELAHRAGIPKGVLSVVTGSAGDIGGELTSNPIVRKLSFTGSTEIGRQ 240 Query: 241 LMSECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDG 300 LM+ECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQD Sbjct: 241 LMAECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDS 300 Query: 301 VYDAFAEKLKVAVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKP 360 VYDAFAEKLKVAVAKLKIGNGLE GTTTGPLIDEKAVAKVQEHIADAL KGAT+LAGGK Sbjct: 301 VYDAFAEKLKVAVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAGGKV 360 Query: 361 MEGNFFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYARD 420 MEGNFFEPTILTNVP +AAVAKEETFGPLAPLFRFKDEA+VIAMSNDTEFGLASYFYARD Sbjct: 361 MEGNFFEPTILTNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYARD 420 Query: 421 LGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLGI 480 LGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLGI Sbjct: 421 LGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLGI 480 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 841 Number of extensions: 13 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 480 Length adjustment: 34 Effective length of query: 446 Effective length of database: 446 Effective search space: 198916 Effective search space used: 198916 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory