Align Ribose ABC transporter ATPase; SubName: Full=Sugar ABC transporter ATP-binding protein; SubName: Full=Sugar ABC transporter ATPase (characterized, see rationale)
to candidate GFF3594 PS417_18400 sugar ABC transporter ATPase
Query= uniprot:A0A1N7TZ92 (517 letters) >FitnessBrowser__WCS417:GFF3594 Length = 517 Score = 995 bits (2572), Expect = 0.0 Identities = 517/517 (100%), Positives = 517/517 (100%) Query: 1 MSSSAPNAVLSVSGIGKTYAQPVLSDITLTLNRGEVLALTGENGAGKSTLSKIIGGLVTP 60 MSSSAPNAVLSVSGIGKTYAQPVLSDITLTLNRGEVLALTGENGAGKSTLSKIIGGLVTP Sbjct: 1 MSSSAPNAVLSVSGIGKTYAQPVLSDITLTLNRGEVLALTGENGAGKSTLSKIIGGLVTP 60 Query: 61 TTGHMQFNGQDFRPGSRTQAEELGVRMVMQELNLLPTLTVAENLFLDNLPSHCGWISRKQ 120 TTGHMQFNGQDFRPGSRTQAEELGVRMVMQELNLLPTLTVAENLFLDNLPSHCGWISRKQ Sbjct: 61 TTGHMQFNGQDFRPGSRTQAEELGVRMVMQELNLLPTLTVAENLFLDNLPSHCGWISRKQ 120 Query: 121 LRKAAIEAMAQVGLDAIDPDTLVGSLGIGHQQMVEIARNLIGDCHVLILDEPTAMLTARE 180 LRKAAIEAMAQVGLDAIDPDTLVGSLGIGHQQMVEIARNLIGDCHVLILDEPTAMLTARE Sbjct: 121 LRKAAIEAMAQVGLDAIDPDTLVGSLGIGHQQMVEIARNLIGDCHVLILDEPTAMLTARE 180 Query: 181 VEMLFEQITRLQARGVAIIYISHRLEELARVAQRIAVLRDGKLVCVEPMANYNSEQLVTL 240 VEMLFEQITRLQARGVAIIYISHRLEELARVAQRIAVLRDGKLVCVEPMANYNSEQLVTL Sbjct: 181 VEMLFEQITRLQARGVAIIYISHRLEELARVAQRIAVLRDGKLVCVEPMANYNSEQLVTL 240 Query: 241 MVGRELGEHIDLGPRTIGGPALTVKGLTRSDKVRDVSFEVRAGEIYGISGLIGAGRTELL 300 MVGRELGEHIDLGPRTIGGPALTVKGLTRSDKVRDVSFEVRAGEIYGISGLIGAGRTELL Sbjct: 241 MVGRELGEHIDLGPRTIGGPALTVKGLTRSDKVRDVSFEVRAGEIYGISGLIGAGRTELL 300 Query: 301 RLIFGADLADSGTVALGSPAQVVSIRSPVDAVGHGIALITEDRKGEGLLLTQSISANIAL 360 RLIFGADLADSGTVALGSPAQVVSIRSPVDAVGHGIALITEDRKGEGLLLTQSISANIAL Sbjct: 301 RLIFGADLADSGTVALGSPAQVVSIRSPVDAVGHGIALITEDRKGEGLLLTQSISANIAL 360 Query: 361 GNMPEISGGGVVNSRDETALAKRQIDAMRIRSSSPAQLVSELSGGNQQKVVIGRWLERDC 420 GNMPEISGGGVVNSRDETALAKRQIDAMRIRSSSPAQLVSELSGGNQQKVVIGRWLERDC Sbjct: 361 GNMPEISGGGVVNSRDETALAKRQIDAMRIRSSSPAQLVSELSGGNQQKVVIGRWLERDC 420 Query: 421 SVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLI 480 SVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLI Sbjct: 421 SVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLI 480 Query: 481 ETFERDSWTQDELLAAAFAGYQKRDALLNDAVLRDTP 517 ETFERDSWTQDELLAAAFAGYQKRDALLNDAVLRDTP Sbjct: 481 ETFERDSWTQDELLAAAFAGYQKRDALLNDAVLRDTP 517 Lambda K H 0.319 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1065 Number of extensions: 29 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 517 Length adjustment: 35 Effective length of query: 482 Effective length of database: 482 Effective search space: 232324 Effective search space used: 232324 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory