Align Serine uptake transporter, SerP1, of 259 aas and 12 TMSs (Trip et al. 2013). L-serine is the highest affinity substrate (Km = 18 μM), but SerP1 also transports L-threonine and L-cysteine (Km values = 20 - 40 μM) (characterized)
to candidate GFF2849 PS417_14545 amino acid transporter
Query= TCDB::F2HQ25 (459 letters) >FitnessBrowser__WCS417:GFF2849 Length = 465 Score = 321 bits (823), Expect = 3e-92 Identities = 177/436 (40%), Positives = 258/436 (59%), Gaps = 12/436 (2%) Query: 4 LQEKHEAQRGLQNRHIQLIAIAGTIGTGLFLGAGKTIQMTGPSVIFAYILIGIAMFFFLR 63 L EK QR L NRHIQL+A+ G IGTGLF+G+GK I ++G S+I Y++IG+ ++F +R Sbjct: 8 LYEKPALQRTLSNRHIQLMAMGGAIGTGLFMGSGKIIALSGTSIILIYMIIGLFVYFVMR 67 Query: 64 TIGEMLYNDPSQHSFLNFVTKYSGVRTGYFTQWSYWLVIVFVCISELTAIGTYIQFWLPQ 123 +GE+L ++ + SF +F Y G R +F WSYWL I + +G + Q+W P Sbjct: 68 AMGELLLSNLNFKSFADFAGAYLGPRAAFFLGWSYWLSWSVAVIGDAVVVGGFFQYWFPH 127 Query: 124 VPLWLIEIVMLALLFGLNTLNSRFFGETEFWFAMIKVAAIIGMIVTAIILVAGNFHYSTV 183 VP W+ + ML LF LN L R FGE EFWFA+IK+ A++ +I + +L+A +F T Sbjct: 128 VPAWMPAVGMLLTLFALNVLTVRLFGEVEFWFAIIKLIAVLTLIGVSGVLIASSFVSPTG 187 Query: 184 LSGKTVHDSASLSNIFDGFQLFPHGAWNFVGALQMVMFAFTSMEFIGMTAAETVNPKKSL 243 + +AS +++ D FP+G + F QM +F+F E IG AAET P+K+L Sbjct: 188 V-------TASFTHLLDPQAAFPNGLFGFFAGFQMAIFSFAGTELIGTAAAETRAPEKTL 240 Query: 244 PKAINQIPVRILLFYVGALLAIMAIFNWHYIPADKSPFVMVFQLIGIKWAAALINFVVLT 303 PKAIN IP+RI+LFYV AL I+A+ +W ++ KSPFV +F + G AA ++NFVVLT Sbjct: 241 PKAINSIPLRIILFYVLALACIIAVTSWQHVSPSKSPFVELFLVAGFPAAAGIVNFVVLT 300 Query: 304 SAASALNSSLFSATRNMYSLAQQHDKGRLTPFTKLSKAGIPINALYMATALSLLAPVLT- 362 SAAS+ NS +FSA+R ++ LA D + F +LSK+ +P +L T L LL VL Sbjct: 301 SAASSANSGVFSASRMLFGLADLGDAPGI--FRRLSKSSVPFISLAFTTLLMLLGLVLLF 358 Query: 363 LIPQIKNAFDFAASCTTNLFLVVYFITLYTYWQYRKSE-DYNPKG-FLTPKPQITVPFIV 420 ++P++ AF ++ + L + + L +Y YRK D + K + P + F + Sbjct: 359 VVPEVMTAFTIVSTVSAILVIFTWSTILASYIAYRKKRPDLHAKSLYKMPGGVLMAWFSL 418 Query: 421 AIFAIVFASLFFNADT 436 A A V L DT Sbjct: 419 AFLAFVLGLLALRPDT 434 Lambda K H 0.329 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 459 Length of database: 465 Length adjustment: 33 Effective length of query: 426 Effective length of database: 432 Effective search space: 184032 Effective search space used: 184032 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory