Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate GFF2673 PS417_13635 D-ribose transporter ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__WCS417:GFF2673 Length = 510 Score = 611 bits (1576), Expect = e-179 Identities = 325/504 (64%), Positives = 383/504 (75%), Gaps = 6/504 (1%) Query: 12 PLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGEC 71 PLL ++ I KTF G+R L+ V L Y GE+HALMGENGAGKSTLMKILSGAY ADPGGE Sbjct: 5 PLLEMQGISKTFNGLRVLKTVGLKVYPGEIHALMGENGAGKSTLMKILSGAYQADPGGEI 64 Query: 72 HIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVARGDMVRAC 131 I GQ + P +A+ LG+AVIYQELSL PNLSVAENIYLGR L+R + R M C Sbjct: 65 RIAGQLIPTFDPATAKALGIAVIYQELSLCPNLSVAENIYLGRELRRGWTIDRKGMEAGC 124 Query: 132 APTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLFA 191 L RLGA+F+PA V+SLSIA+RQLVEIARA+H A+ILVMDEPTTPLS+ ETDRLFA Sbjct: 125 IEVLQRLGAEFTPATRVSSLSIAERQLVEIARALHAHAKILVMDEPTTPLSSRETDRLFA 184 Query: 192 LIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRDL 251 LI+QLR +G+AI+YISHRMAEI L+DRV+VLRDG ++G L R LS ALVKMMVGRDL Sbjct: 185 LIKQLRSQGLAIIYISHRMAEIYALSDRVSVLRDGHYIGELTRDALSAEALVKMMVGRDL 244 Query: 252 SGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRTELARLVF 311 SGFY K H V++ VRD+ADG+RV+ CSFDL AGEVLG+AGLVGAGRTELARL+F Sbjct: 245 SGFYKKEHAAYNPGNVVMRVRDMADGKRVRHCSFDLHAGEVLGIAGLVGAGRTELARLIF 304 Query: 312 GADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQSVHENIN 371 AD RT G + + G P P AI AG+ YLTEDRK QGLFLD SV +NIN Sbjct: 305 AADPRTSGTLEVV------GKAVTPLRTPADAIRAGVVYLTEDRKAQGLFLDMSVADNIN 358 Query: 372 LIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVMLSRLLEI 431 + DA G L+R A +R+ +AI +L IRVA +VN GALSGGNQQKV+L+RLLE+ Sbjct: 359 VCACVPDAHAGGVLDRDHALQRSNDAIKSLSIRVASGKVNAGALSGGNQQKVLLARLLEV 418 Query: 432 QPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRVLVMREGT 491 +P VLILDEPTRGVDIG+KSEIYR+IN LAQ+G+ I++ISSELPE++G CDRVL+MREG Sbjct: 419 KPHVLILDEPTRGVDIGSKSEIYRIINQLAQAGIGIVVISSELPEIIGTCDRVLIMREGQ 478 Query: 492 LAGEVRPAGSAAETQERIIALATG 515 L EV A A +QERII LATG Sbjct: 479 LVAEVGGASGQAISQERIIDLATG 502 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 762 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 510 Length adjustment: 35 Effective length of query: 505 Effective length of database: 475 Effective search space: 239875 Effective search space used: 239875 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory