Align Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized)
to candidate GFF2673 PS417_13635 D-ribose transporter ATP-binding protein
Query= SwissProt::Q8G847 (513 letters) >FitnessBrowser__WCS417:GFF2673 Length = 510 Score = 341 bits (874), Expect = 4e-98 Identities = 195/508 (38%), Positives = 307/508 (60%), Gaps = 27/508 (5%) Query: 6 PIVVMKGITIEFPGVKALDGVDLTLYPGEVHALMGENGAGKSTMIKALTGVYKIN-AGSI 64 P++ M+GI+ F G++ L V L +YPGE+HALMGENGAGKST++K L+G Y+ + G I Sbjct: 5 PLLEMQGISKTFNGLRVLKTVGLKVYPGEIHALMGENGAGKSTLMKILSGAYQADPGGEI 64 Query: 65 MVDGKPQQFNGTLDAQNAGIATVYQEVNLCTNLSVGENVMLGHEKRGPFGIDWKKTHEAA 124 + G+ A+ GIA +YQE++LC NLSV EN+ LG E R + ID K Sbjct: 65 RIAGQLIPTFDPATAKALGIAVIYQELSLCPNLSVAENIYLGRELRRGWTIDRKGMEAGC 124 Query: 125 KKYLAQMGLESIDPHTPLSSISIAMQQLVAIARAMVINAKVLILDEPTSSLDANEVRDLF 184 + L ++G E P T +SS+SIA +QLV IARA+ +AK+L++DEPT+ L + E LF Sbjct: 125 IEVLQRLGAE-FTPATRVSSLSIAERQLVEIARALHAHAKILVMDEPTTPLSSRETDRLF 183 Query: 185 AIMRKVRDSGVAILFVSHFLDQIYEITDRLTILRNGQFIKEVMTKDTPRDELIGMMIGKS 244 A+++++R G+AI+++SH + +IY ++DR+++LR+G +I E+ + L+ MM+G+ Sbjct: 184 ALIKQLRSQGLAIIYISHRMAEIYALSDRVSVLRDGHYIGELTRDALSAEALVKMMVGRD 243 Query: 245 AAELSQIGAKKARREITPGEKPIVDVKGLGKKGTINPVDVDIYKGEVVGFAGLLGSGRTE 304 + KK PG ++ V+ + + D++ GEV+G AGL+G+GRTE Sbjct: 244 LSGF----YKKEHAAYNPG-NVVMRVRDMADGKRVRHCSFDLHAGEVLGIAGLVGAGRTE 298 Query: 305 LGRLLYGADKPDSGTYTLNGKKVN-ISDPYTALKNKIAYSTENRRDEGIIGDLTVRQNIL 363 L RL++ AD SGT + GK V + P A++ + Y TE+R+ +G+ D++V NI Sbjct: 299 LARLIFAADPRTSGTLEVVGKAVTPLRTPADAIRAGVVYLTEDRKAQGLFLDMSVADNIN 358 Query: 364 IALQATRGMFKPIPKKEADAIVDK---------YMKELNVRPADPDRPVKNLSGGNQQKV 414 + +P A ++D+ +K L++R A LSGGNQQKV Sbjct: 359 VC--------ACVPDAHAGGVLDRDHALQRSNDAIKSLSIRVASGKVNAGALSGGNQQKV 410 Query: 415 LIGRWLATHPELLILDEPTRGIDIGAKAEIQQVVLDLASQGMGVVFISSELEEVVRLSDD 474 L+ R L P +LILDEPTRG+DIG+K+EI +++ LA G+G+V ISSEL E++ D Sbjct: 411 LLARLLEVKPHVLILDEPTRGVDIGSKSEIYRIINQLAQAGIGIVVISSELPEIIGTCDR 470 Query: 475 IEVLKDRHKIAEI--ENDDTVSQATIVE 500 + ++++ +AE+ + +SQ I++ Sbjct: 471 VLIMREGQLVAEVGGASGQAISQERIID 498 Lambda K H 0.316 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 648 Number of extensions: 31 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 513 Length of database: 510 Length adjustment: 35 Effective length of query: 478 Effective length of database: 475 Effective search space: 227050 Effective search space used: 227050 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory