Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate GFF3655 PS417_18705 succinate dehydrogenase
Query= BRENDA::A6T8Z5 (462 letters) >lcl|FitnessBrowser__WCS417:GFF3655 PS417_18705 succinate dehydrogenase Length = 460 Score = 635 bits (1637), Expect = 0.0 Identities = 310/458 (67%), Positives = 371/458 (81%) Query: 5 SATHAVSVNPTTGEVVSSLPWASEREVDAAITLAAAGYRQWRQTPLADRADALRRIGAAL 64 + THA+S+NP GE V S P+ + +++DAA+ + +R WR+ P++ RA+ L + +AL Sbjct: 3 ATTHALSINPANGETVGSYPYETAQQLDAALDRSTLAFRAWRRQPVSQRAELLLSLASAL 62 Query: 65 RARGEEVAQMITLEMGKPIAQARGEVAKSANLCDWYAEHGPAMLATEATLVENNQAVIEY 124 R + E++AQMITLEMGKPIAQAR E+ K A L +WYA HGPAMLA E TLV+N A IEY Sbjct: 63 REQAEDMAQMITLEMGKPIAQARAEIEKCAQLSEWYAAHGPAMLAPEPTLVDNGSAQIEY 122 Query: 125 RPLGAILAVMPWNFPVWQVMRGAVPILLAGNSYLLKHAPNVMGSARLLGEIFAAAGLPDG 184 RPLG I AVMPWNFPVWQV+RGAVP +LAGN+Y+LKHAPNVMGSA L+ F AG +G Sbjct: 123 RPLGPIFAVMPWNFPVWQVLRGAVPTMLAGNTYVLKHAPNVMGSAYLIQRAFQKAGFAEG 182 Query: 185 VFGWVNATNDGVSQIINDDRIAAVTVTGSVRAGKAIGAQAGAALKKCVLELGGSDPFIVL 244 +F VN TNDGVS+ I D RIAAVT+TGSVRAG AIG+QAGAALKKCVLELGGSDPFIVL Sbjct: 183 LFEVVNVTNDGVSKAIADPRIAAVTLTGSVRAGIAIGSQAGAALKKCVLELGGSDPFIVL 242 Query: 245 NDADLDEAVKAAVTGRYQNSGQVCAASKRFILEAGIAEAFTRKFVDAVAALKMGDPRDEQ 304 NDADLD AV+AA+ GR+QNSGQVCAA+KR I+E G+ EAFT KF++A AL MGDP Sbjct: 243 NDADLDAAVQAALIGRFQNSGQVCAAAKRLIIEEGVVEAFTVKFLEASRALVMGDPTSAA 302 Query: 305 NYVGPMARFDLRDELHQQVTATLDEGATLLLGAEKIEGAGNYYAPTVLGNVTAGMTGFRQ 364 Y+GPMARFDLRDELH QV ATL+EGATLLLG K+ GAGNYY PTVL +VT MT F+Q Sbjct: 303 TYIGPMARFDLRDELHGQVQATLEEGATLLLGGHKVPGAGNYYEPTVLADVTDQMTSFKQ 362 Query: 365 ELFGPVATLTTARDADHALALANDSEFGLSATVYTTDEAQAQRFARELECGGVFLNGYCA 424 ELFGPVA++ TARDADHA+ALANDSEFGL+A+++TTD A+A+ A +LE GG+F+N + Sbjct: 363 ELFGPVASIITARDADHAVALANDSEFGLTASIFTTDSAKARDIANQLETGGIFINAFSV 422 Query: 425 SDARVAFGGVKKSGFGRELSHFGLHEFCNAQTVWKDRR 462 SD RVAFGGVKKSGFGRELSHFG+ EFCNAQTVW DR+ Sbjct: 423 SDPRVAFGGVKKSGFGRELSHFGVREFCNAQTVWLDRK 460 Lambda K H 0.319 0.133 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 574 Number of extensions: 10 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 462 Length of database: 460 Length adjustment: 33 Effective length of query: 429 Effective length of database: 427 Effective search space: 183183 Effective search space used: 183183 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory