Align Serine uptake transporter, SerP1, of 259 aas and 12 TMSs (Trip et al. 2013). L-serine is the highest affinity substrate (Km = 18 μM), but SerP1 also transports L-threonine and L-cysteine (Km values = 20 - 40 μM) (characterized)
to candidate GFF4632 PS417_23700 aromatic amino acid transporter
Query= TCDB::F2HQ25 (459 letters) >lcl|FitnessBrowser__WCS417:GFF4632 PS417_23700 aromatic amino acid transporter Length = 467 Score = 300 bits (768), Expect = 7e-86 Identities = 165/433 (38%), Positives = 254/433 (58%), Gaps = 28/433 (6%) Query: 11 QRGLQNRHIQLIAIAGTIGTGLFLGAGKTIQMTGPSVIFAYILIGIAMFFFLRTIGEMLY 70 +RGL+NRHIQLIA+ G IGTGLFLG+ ++ GPS+I Y + G F +R +GEM+ Sbjct: 12 KRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLIMRQLGEMIV 71 Query: 71 NDPSQHSFLNFVTKYSGVRTGYFTQWSYWLVIVFVCISELTAIGTYIQFWLPQVPLWLIE 130 +P SF +F KY G G+ W+YW++ V V ++ELTA+G YIQFW P +P W+ Sbjct: 72 EEPVAGSFSHFAHKYWGGYAGFLAGWNYWVLYVLVGMAELTAVGKYIQFWWPDIPTWVSA 131 Query: 131 IVMLALLFGLNTLNSRFFGETEFWFAMIKVAAIIGMIVTAIILVAGNFHYSTVLSGKTVH 190 +V + +NTLN +FFGETEFWFA+IKV AI+GMIV L L T Sbjct: 132 LVFFVAVNLINTLNVKFFGETEFWFAIIKVVAIVGMIVLGCYL----------LFSGTGG 181 Query: 191 DSASLSNIFDGFQLFPHGAWNFVGALQMVMFAFTSMEFIGMTAAETVNPKKSLPKAINQI 250 AS+SN++ FP+G + ++ +MF+F +E +G+TAAE P+K +PKAINQ+ Sbjct: 182 PQASVSNLWSHGGFFPNGGMGLLMSMAFIMFSFGGLELVGITAAEASEPRKVIPKAINQV 241 Query: 251 PVRILLFYVGALLAIMAIFNWHYI---------PADKSPFVMVFQLIGIKWAAALINFVV 301 RIL+FYVGAL +++++ W + SPFV +F LIG AA ++NFVV Sbjct: 242 VYRILIFYVGALTVLLSLYPWDQLLQTLGASGDAYSGSPFVQIFSLIGNDTAAHILNFVV 301 Query: 302 LTSAASALNSSLFSATRNMYSLAQQHDKGRLTPFTKLSKAGIPINALYMATALSLLAPVL 361 LT+A S NS ++ +R ++ LA+Q D + KL+K G+PI AL ++ +++L V+ Sbjct: 302 LTAALSVYNSGVYCNSRMLFGLAEQGDAPK--SLMKLNKQGVPIRALAISALVTMLCVVV 359 Query: 362 TLIPQIKNAFDFAASCTTNLFLVVYFITLYTYWQYRKS---EDYNP--KGFLTP-KPQIT 415 + ++A + + ++ + + T+ ++RK+ + P K F P + Sbjct: 360 NYVAP-QSALELLFALVVASLMINWALISITHIKFRKAMGEQGVTPSFKTFWFPFSNYLC 418 Query: 416 VPFIVAIFAIVFA 428 + F+V I +++ A Sbjct: 419 LAFMVMIISVMLA 431 Lambda K H 0.329 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 594 Number of extensions: 33 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 459 Length of database: 467 Length adjustment: 33 Effective length of query: 426 Effective length of database: 434 Effective search space: 184884 Effective search space used: 184884 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory