Align Aromatic amino acid transport protein AroP (characterized, see rationale)
to candidate GFF4632 PS417_23700 aromatic amino acid transporter
Query= uniprot:Q4KIP0 (466 letters) >lcl|FitnessBrowser__WCS417:GFF4632 PS417_23700 aromatic amino acid transporter Length = 467 Score = 785 bits (2028), Expect = 0.0 Identities = 387/445 (86%), Positives = 413/445 (92%) Query: 10 LKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLIMRQLGEMI 69 LKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLIMRQLGEMI Sbjct: 11 LKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLIMRQLGEMI 70 Query: 70 VEEPVAGSFSHFAHKYWGGYFGFLAGWNYWVLYVLVGMAELTAVGKYVQFWWPEIPTWVS 129 VEEPVAGSFSHFAHKYWGGY GFLAGWNYWVLYVLVGMAELTAVGKY+QFWWP+IPTWVS Sbjct: 71 VEEPVAGSFSHFAHKYWGGYAGFLAGWNYWVLYVLVGMAELTAVGKYIQFWWPDIPTWVS 130 Query: 130 AAVFFVLVNLINMMNVKFFGEAEFWFAIIKVVAIVGMIVLGCYMLFSGSGGSQASVSNLW 189 A VFFV VNLIN +NVKFFGE EFWFAIIKVVAIVGMIVLGCY+LFSG+GG QASVSNLW Sbjct: 131 ALVFFVAVNLINTLNVKFFGETEFWFAIIKVVAIVGMIVLGCYLLFSGTGGPQASVSNLW 190 Query: 190 SHGGFFPNGGTGLLMAMAFIMFSFGGLELVGITAAEAAEPRKVIPKAINQVVYRVLIFYV 249 SHGGFFPNGG GLLM+MAFIMFSFGGLELVGITAAEA+EPRKVIPKAINQVVYR+LIFYV Sbjct: 191 SHGGFFPNGGMGLLMSMAFIMFSFGGLELVGITAAEASEPRKVIPKAINQVVYRILIFYV 250 Query: 250 GALAVLLSLYPWDELLVSLNAGGDAYSSSPFVKIFSLIGSDAAAQILNFVVLTAALSVYN 309 GAL VLLSLYPWD+LL +L A GDAYS SPFV+IFSLIG+D AA ILNFVVLTAALSVYN Sbjct: 251 GALTVLLSLYPWDQLLQTLGASGDAYSGSPFVQIFSLIGNDTAAHILNFVVLTAALSVYN 310 Query: 310 SGVYCNSRMLYGLAEQGDAPKALMKLNKQGVPILALGISALITLLCVLVNYLAPHEALEL 369 SGVYCNSRML+GLAEQGDAPK+LMKLNKQGVPI AL ISAL+T+LCV+VNY+AP ALEL Sbjct: 311 SGVYCNSRMLFGLAEQGDAPKSLMKLNKQGVPIRALAISALVTMLCVVVNYVAPQSALEL 370 Query: 370 LFALVVAALMINWALISLTHLRFRKAMAEQGVVPSFKAFWSPLSNYLCLAFMVMIVGVMW 429 LFALVVA+LMINWALIS+TH++FRKAM EQGV PSFK FW P SNYLCLAFMVMI+ VM Sbjct: 371 LFALVVASLMINWALISITHIKFRKAMGEQGVTPSFKTFWFPFSNYLCLAFMVMIISVML 430 Query: 430 MIPGIRASVYAIPVWVLVIWGFYLL 454 IPGI SVYA+PVWV +I+ Y L Sbjct: 431 AIPGISESVYAMPVWVGIIYVAYRL 455 Lambda K H 0.327 0.141 0.440 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 880 Number of extensions: 39 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 466 Length of database: 467 Length adjustment: 33 Effective length of query: 433 Effective length of database: 434 Effective search space: 187922 Effective search space used: 187922 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory