Align 2-aminomuconic semialdehyde dehydrogenase; Aldehyde dehydrogenase 12; Aldehyde dehydrogenase family 8 member A1; EC 1.2.1.32 (characterized)
to candidate GFF3484 PS417_17840 betaine-aldehyde dehydrogenase
Query= SwissProt::Q9H2A2 (487 letters) >FitnessBrowser__WCS417:GFF3484 Length = 486 Score = 392 bits (1008), Expect = e-113 Identities = 195/484 (40%), Positives = 308/484 (63%), Gaps = 17/484 (3%) Query: 9 MLENFIDGKFLPCSSYIDSYDPSTGEVYCRVPNSGKDEIEAAVKAAREAFPSWSSRSPQE 68 M++++I+G+ + +Y+P+TGE V + G +E+ AV AA+EAFP W++ +E Sbjct: 1 MIKHWINGREVESKDTFINYNPATGEAIGEVASGGAEEVALAVAAAKEAFPKWANTPAKE 60 Query: 69 RSRVLNQVADLLEQSLEEFAQAESKDQGKTLALARTMDIPRSVQNFRFFASSSLHHTSEC 128 R+R++ ++ +L+EQ++ A+ E+ D G + + + IPR+ NF FFA C Sbjct: 61 RARLMRKLGELIEQNVPHLAELETLDTGLPIHQTKNVLIPRASHNFDFFAEV-------C 113 Query: 129 TQMDHLG------CMHYTVRAPVGVAGLISPWNLPLYLLTWKIAPAMAAGNTVIAKPSEL 182 T+MD ++YT+ PVGV GL+SPWN+P TWK AP +A GNT + K SEL Sbjct: 114 TRMDGHSYPVDDQMLNYTLYQPVGVCGLVSPWNVPFMTATWKTAPCLALGNTAVLKMSEL 173 Query: 183 TSVTAWMLCKLLDKAGVPPGVVNIVFGTGPRVGEALVSHPEVPLISFTGSQPTAERITQL 242 + +TA L +L +AG+P GV+N++ G G G+ALV HP+V ISFTG T ++I Q Sbjct: 174 SPLTANELGRLAVEAGIPNGVLNVIQGYGATAGDALVRHPDVRAISFTGGTATGKKIMQT 233 Query: 243 SAPHCKKLSLELGGKNPAIIFEDANLDECIPATVRSSFANQGEICLCTSRIFVQKSIYSE 302 + KK S+ELGGK+P +IFEDA+L+ + + + + F+ GE C SRIF+Q+S+Y + Sbjct: 234 AG--LKKYSMELGGKSPVLIFEDADLERALDSALFTIFSLNGERCTAGSRIFIQESVYPQ 291 Query: 303 FLKRFVEATRKWKVGIPSDPLVSIGALISKAHLEKVRSYVKRALAEGAQIWCGEGVDK-L 361 F+ F ++ VG P DP +G++I++AH +KV Y+K + EGA + G G+D+ Sbjct: 292 FVAEFAARAKRLIVGDPQDPKTQVGSMITQAHYDKVTGYIKIGIEEGATLLAG-GLDRPA 350 Query: 362 SLPARNQAGYFMLPTVITDIKDESCCMTEEIFGPVTCVVPFDSEEEVIERANNVKYGLAA 421 +LPA G F+ PTV D+ ++ EEIFGPV C++PF E E ++ AN+ +YGLA+ Sbjct: 351 NLPAHLSKGQFIQPTVFADVNNKMRIAQEEIFGPVVCLIPFKDEAEALQLANDTEYGLAS 410 Query: 422 TVWSSNVGRVHRVAKKLQSGLVWTNCWLIRELNLPFGGMKSSGIGREGAKDSYDFFTEIK 481 +W+ ++G+ HR+A+ +++G+V+ N +R+L PFGG+K SG GREG + S++ F EIK Sbjct: 411 YIWTQDIGKAHRLARGIEAGMVFINSQNVRDLRQPFGGVKGSGTGREGGQYSFEVFAEIK 470 Query: 482 TITV 485 + + Sbjct: 471 NVCI 474 Lambda K H 0.319 0.133 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 583 Number of extensions: 21 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 486 Length adjustment: 34 Effective length of query: 453 Effective length of database: 452 Effective search space: 204756 Effective search space used: 204756 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory