Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate GFF2673 PS417_13635 D-ribose transporter ATP-binding protein
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__WCS417:GFF2673 Length = 510 Score = 385 bits (990), Expect = e-111 Identities = 215/503 (42%), Positives = 322/503 (64%), Gaps = 11/503 (2%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPD-AGEIL 72 +L+ +GI K F G+ + V +VY EI +L+GENGAGKSTL+KIL+G + D GEI Sbjct: 6 LLEMQGISKTFNGLRVLKTVGLKVYPGEIHALMGENGAGKSTLMKILSGAYQADPGGEIR 65 Query: 73 VNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENY 132 + G+ + P A GI+VI+QEL+LC N++VAENI+L E RG +D Sbjct: 66 IAGQLIPTFDPATAKALGIAVIYQELSLCPNLSVAENIYLGRELRRGWT------IDRKG 119 Query: 133 MYTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEET 192 M E+L +GA+F+P V +L+ A+RQ+VEI +AL +I+ MDEPT+ L+ ET Sbjct: 120 MEAGCIEVLQRLGAEFTPATRVSSLSIAERQLVEIARALHAHAKILVMDEPTTPLSSRET 179 Query: 193 ERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMM 252 +RLF +I+ L+S+G++++++SHR+ E+ +SDR+ V+RDG IGEL + + ++KMM Sbjct: 180 DRLFALIKQLRSQGLAIIYISHRMAEIYALSDRVSVLRDGHYIGELTRDALSAEALVKMM 239 Query: 253 VGREVEFF--PHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTET 310 VGR++ F PG + + VR++ +V++ SF++ GEVLG AGLVGAGRTE Sbjct: 240 VGRDLSGFYKKEHAAYNPGNVVMRVRDMADGKRVRHCSFDLHAGEVLGIAGLVGAGRTEL 299 Query: 311 MLLVFGVNQKESGDIYVNGRKVE-IKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVL 369 L+F + + SG + V G+ V ++ P DAI+ G+ + EDRK QGL L M+V DNI + Sbjct: 300 ARLIFAADPRTSGTLEVVGKAVTPLRTPADAIRAGVVYLTEDRKAQGLFLDMSVADNINV 359 Query: 370 PSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATN 429 + + G VLD + S D +K LSI+ S LSGGNQQKV+LA+ L Sbjct: 360 CACVPDAHAGGVLDRDHALQRSNDAIKSLSIRVASGKVNAGALSGGNQQKVLLARLLEVK 419 Query: 430 ADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEI 489 +LI DEPTRG+D+G+K+EI+R+I +LA G +++ISSELPEI+ DR+++M EG++ Sbjct: 420 PHVLILDEPTRGVDIGSKSEIYRIINQLAQAGIGIVVISSELPEIIGTCDRVLIMREGQL 479 Query: 490 TAVLDNRE-KRVTQEEIMYYASG 511 A + + ++QE I+ A+G Sbjct: 480 VAEVGGASGQAISQERIIDLATG 502 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 632 Number of extensions: 37 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 510 Length adjustment: 35 Effective length of query: 485 Effective length of database: 475 Effective search space: 230375 Effective search space used: 230375 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory