Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-15108 (486 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 350 bits (898), Expect = e-101 Identities = 190/483 (39%), Positives = 286/483 (59%), Gaps = 23/483 (4%) Query: 15 IDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALNGP-WKKMTANER 73 I G P+L G+ +PATE + + AA+I AV +A++A + W+ + +R Sbjct: 26 IGGVSGPALSGRWLPVTDPATEMVVAEAPDSDAADIARAVASAQRAFDSHVWRGLRPADR 85 Query: 74 IAVLRKVGDLILERKEELSVLESLDTGKPTWLSGSIDIPRAAYNFHFFSDYIRTITNEAT 133 +L ++ +LI +ELS LE+L +GK ++ +ID+ A +++R + AT Sbjct: 86 EKLLFRLSELIERHADELSALETLQSGKLQGIARAIDVQAGA-------EFVRYMAGWAT 138 Query: 134 QMDDVALN------------YAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMK 181 +++ L+ Y R PVGV+G I PWN PL + WK+APALAAG TVV+K Sbjct: 139 KLEGQTLDNSIPIPGPQWVTYTRREPVGVVGAIVPWNFPLAIALWKIAPALAAGCTVVLK 198 Query: 182 PAELTPMTATVLAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGK 241 P+E TP+TA LA + +AG+P+GV+N+V G G +AGAAL HP V +SFTG T GK Sbjct: 199 PSEDTPLTALRLAHLALEAGIPEGVLNVVCGRGA-TAGAALIAHPGVRKLSFTGSTAVGK 257 Query: 242 IIMASAAKTLKRLSYELGGKNPNVIFADSNLDEVIETTMKSSFINQGEVCLCGSRIYVER 301 ++ +A + + R + ELGGK+P V+ D++ +V + F +QG+VC SR+ V R Sbjct: 258 VVGHAAVENMARFTLELGGKSPAVVMEDADPSQVAQGIATGIFFHQGQVCTASSRLLVHR 317 Query: 302 PAYEAFLEKFVAKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGGK 361 Y L++ + + +G FDA T+ G L S H+ RV +I A EG T++ GG+ Sbjct: 318 SLYRRVLDELAGIAQGMRIGSGFDAATQFGPLTSKAHFARVMDFIASAKAEGATLVAGGE 377 Query: 362 RPEGLEKGYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSAS 421 R + G F++PTI T RVV+EE+FGPV+ V PFD E+ + NDT YGL+AS Sbjct: 378 RVH--DAGCFVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDVEDAIAAANDTPYGLAAS 435 Query: 422 VWTNDLRRAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSELTN 481 +WT L AHR+ +++AG+VWVN + D P GG+KQSG GR+ G + E ++EL + Sbjct: 436 LWTQSLSHAHRIVPRLQAGVVWVNAHNVLDAGLPLGGIKQSGTGRDLGRAAVEGFTELKS 495 Query: 482 ICI 484 +C+ Sbjct: 496 VCM 498 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 580 Number of extensions: 17 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 500 Length adjustment: 34 Effective length of query: 452 Effective length of database: 466 Effective search space: 210632 Effective search space used: 210632 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory