Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate Ac3H11_2529 3-methylmercaptopropionyl-CoA ligase (DmdB)
Query= BRENDA::A4YDR9 (549 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_2529 3-methylmercaptopropionyl-CoA ligase (DmdB) Length = 547 Score = 245 bits (626), Expect = 3e-69 Identities = 159/506 (31%), Positives = 258/506 (50%), Gaps = 15/506 (2%) Query: 47 RYTYSTFYDNVMVQASALMRRGFSREDKLSFISRNRPEFLESFFGVPYAGGVLVPINFRL 106 RYTY A+AL D+++ ++ N +E +FGV +G VL +N RL Sbjct: 39 RYTYRDLAARARRLANALDDLQLQFSDRVATLAWNGYRHMEMYFGVSGSGRVLHTVNPRL 98 Query: 107 SPKEMAYIINHSDSKFVVVDEPYLNSLLEVKDQ---IKAEIILLEDPDNPSASETARKEV 163 P ++A+I+NH++ + + D +L + V + +K + L + P+ S Sbjct: 99 HPDQIAWIVNHAEDQVLCFDLTFLPLVQAVHAKCPTVKKWVALCDADKLPADSGVPGLS- 157 Query: 164 RMTYRELVKGGSRDPLPIPAKEEYSMITLYYTSGTTGLPKGVMHHHRGAFLNAMAEVLEH 223 +Y + + S D P +E S ++ YTSGTTG PK ++ HR L+A A L Sbjct: 158 --SYEDWIGAHSAD-YAWPEFDENSASSMCYTSGTTGNPKAALYSHRSTTLHAYAAALPD 214 Query: 224 QMDLNS--VYLWTLPMFHAASWGFSWATVAVGATNVCLDK-VDYPLIYRLVEKERVTHMC 280 M L++ L +PMFH +WG ++ G V +D IY L+E E+V++ Sbjct: 215 VMCLSARDSVLPVVPMFHVNAWGIPYSAALTGCKLVFPGPAMDGKSIYELIESEKVSYAA 274 Query: 281 AAPTVYVNLADYMKRNNLKFSNRVHMLVAGAAPAPATLKAMQE-IGGYMCHVYGLTETYG 339 PTV+ + +MK LKFS ++ G+A PA + A +E G + H +G+TE Sbjct: 275 GVPTVWQMMLGHMKPAGLKFSTLKRTVIGGSACPPAMIHAFKEDYGVEVLHAWGMTEMSP 334 Query: 340 PHSICEWRREWDSLPLEEQAKLKARQGIPYVSFEMDVFDANGKPVPWDGKTIGEVVMRGH 399 ++C + + SLP +EQ K+ +QG +M + +G+ +PWDGKT G+++++G Sbjct: 335 LGTLCTLKNKHLSLPKDEQMKVLLKQGRAIYGVDMKIVGGDGEELPWDGKTYGDLLVKGP 394 Query: 400 NVALGYYKNP---EKTAESFRDGWFHSGDAAVVHPDGYIEIVDRFKDLINTGGEKVSSIL 456 + Y+K + GWF +GD A + DG+++I DR KD+I +GGE +SSI Sbjct: 395 WIVDSYFKGEGGHPLVKDKQGRGWFPTGDVATIDADGFMQITDRSKDVIKSGGEWISSID 454 Query: 457 VEKTLMEIPGVKAVAVYGTPDEKWGEVVTARIELQEGVKLTEEEVIKFCKERLAHFECPK 516 +E M P + A G P KW E + + G ++T +E++ F + + A ++ P Sbjct: 455 IENIAMAHPAIAMAACVGMPHPKWDERPIVAVVKRPGTEVTRDELLAFYEGKTAKWQIPD 514 Query: 517 IVEF-GPIPMTATGKMQKYVLRNEAK 541 V F IP+ ATGKM K LR + K Sbjct: 515 DVVFVDAIPLGATGKMLKTKLREQLK 540 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 732 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 547 Length adjustment: 36 Effective length of query: 513 Effective length of database: 511 Effective search space: 262143 Effective search space used: 262143 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory