Align L-arabonate dehydratase; L-arabinonate dehydratase; EC 4.2.1.25 (characterized)
to candidate Ac3H11_2082 Phosphogluconate dehydratase (EC 4.2.1.12)
Query= SwissProt::Q1JUQ1 (583 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_2082 Phosphogluconate dehydratase (EC 4.2.1.12) Length = 589 Score = 189 bits (480), Expect = 3e-52 Identities = 158/517 (30%), Positives = 249/517 (48%), Gaps = 32/517 (6%) Query: 42 PIIGICNTWSELTPCNAHFRKLA-----EHVKRG--ISEAGGFPVEFPVFSNGESNLRPS 94 P IG+ ++++ + ++ E K+G + AGG P + G + S Sbjct: 66 PNIGVVTAYNDMLSAHQPYQSYPAVLRDEAAKQGATVQVAGGVPAMCDGVTQGTPGMELS 125 Query: 95 AMLTRNLASMDVEEAIRGNPIDAVVLLAGCDKTTPALLMGAASCD-VPAIVVSGGPMLNG 153 + +R+ +M A+ + D +LL CDK P LL+GA +P + V GPM G Sbjct: 126 -LFSRDAIAMATAVALSHDVFDGALLLGVCDKIVPGLLIGALHYGHLPCVFVPAGPMGTG 184 Query: 154 KLEGKNIGSGTAVWQLHEALKAGEIDVHHFLSAEAGMSRSAGTCNTMGTASTMACMAEAL 213 L K+ ++ E G + L AE+ S GTC GTA++ + EA+ Sbjct: 185 -LSNKDKA------KVREQYAQGLVGRDELLQAESAAYHSPGTCTFYGTANSNQMLLEAM 237 Query: 214 GVALPHNA-AIPAVDSRRYVL--AHMSGIRIVEMALEGLVLSKILTRAAFENAIRANAAI 270 G+ +P A P ++R A + + I + + + K++ NA+ A A Sbjct: 238 GLHVPGAAFESPGTEAREAFTRQALRTVLDIGKRSKRFTPIGKLVDERCIVNAMAALLAT 297 Query: 271 GGSTNAVIHLKAIAGRIGVPLELEDWMRIGRDTPTIVDLMPSGRFPMEEFYYAGGLPAVL 330 GGSTN +IH AIA G+ ++ D+ + P + + P+G + +F AGG P +L Sbjct: 298 GGSTNHLIHWVAIARSAGILIDWTDFDELSSVVPLLARVYPNGDADVNQFQAAGGPPWIL 357 Query: 331 RRLGEGGLLPNPDALTVNGKSLWDNVREAP--NYDEEVIRPLDRPLIADGGIRILRGNLA 388 R L GG + +PD ++VN + D + AP + D V+RP+ P GG+R+L+G L Sbjct: 358 RELLAGGFM-HPDVMSVNVGGIADGGKSAPAVSGDTSVLRPVSAPFSPTGGLRLLQGRLG 416 Query: 389 PRGAVLKPSAASPELLKHRGRAVVFENLDHYKATINDEALDIDASSVMVLKNCGPRGYPG 448 AV+K SA + A VF++ + A + A D++ V V++ GP+ G Sbjct: 417 --RAVIKVSAVPEDRHIIEAPARVFDSQEALLAAFS--AGDVNQDMVAVVRFQGPQA-NG 471 Query: 449 MAEVGNMGLPPKLLRQGVKDMVRISDARMSGTAYGTV--VLHVAPEAAAGGPLAAVRNGD 506 M E+ + P +L+ + ++D RMSG A G V +HV PEA AGGPLA VR+GD Sbjct: 472 MPELHKLTPPLAVLQNQGFKVALVTDGRMSG-ASGKVPAAIHVTPEALAGGPLAKVRDGD 530 Query: 507 WIELDCEAGTLHLDITDDELHRRLSDVDPTAAPGVAG 543 + +D AGT LD+ DE P +AP G Sbjct: 531 IVRVDAVAGT--LDVLVDEATWAARTPSPYSAPAQTG 565 Lambda K H 0.319 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 866 Number of extensions: 54 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 583 Length of database: 589 Length adjustment: 37 Effective length of query: 546 Effective length of database: 552 Effective search space: 301392 Effective search space used: 301392 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory