Align Alpha-ketoglutarate semialdehyde dehydrogenase; KGSADH; EC 1.2.1.26 (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= SwissProt::D4GP41 (482 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 309 bits (792), Expect = 1e-88 Identities = 192/481 (39%), Positives = 272/481 (56%), Gaps = 17/481 (3%) Query: 7 NYVNGEWVTSETGETTEVTNPANPSEVVAAYQHSNENDAAAAVDAAVAAEDE--WRNTPG 64 N + G + +G VT+PA VVA S+ D A AV +A A D WR Sbjct: 24 NVIGGVSGPALSGRWLPVTDPATEM-VVAEAPDSDAADIARAVASAQRAFDSHVWRGLRP 82 Query: 65 PERGRILREAGTLLAQRKDELTEILTAEEGKARPEA-AGEVQRAIDIFHYFSSKAADLGG 123 +R ++L L+ + DEL+ + T + GK + A A +VQ + Y + A L G Sbjct: 83 ADREKLLFRLSELIERHADELSALETLQSGKLQGIARAIDVQAGAEFVRYMAGWATKLEG 142 Query: 124 TKKGAS----GPNTNLYTRQEPVGVAALITPWNYPIAIPAWKLAPALAAGNTVVLKPASI 179 S GP YTR+EPVGV I PWN+P+AI WK+APALAAG TVVLKP+ Sbjct: 143 QTLDNSIPIPGPQWVTYTRREPVGVVGAIVPWNFPLAIALWKIAPALAAGCTVVLKPSED 202 Query: 180 APGVVIEIARALDEAGLPDGVLNVVTGPGSSVGSEFIGNEGTDLVSFTGSSQVGEMVYEQ 239 P + +A EAG+P+GVLNVV G G++ G+ I + G +SFTGS+ VG++V Sbjct: 203 TPLTALRLAHLALEAGIPEGVLNVVCGRGATAGAALIAHPGVRKLSFTGSTAVGKVVGHA 262 Query: 240 ATDAGKRVQTELGGKNPTLVADSANPAEAADIVANGGFGTTGQSCTACSRAIVHEDVYDD 299 A + R ELGGK+P +V + A+P++ A +A G F GQ CTA SR +VH +Y Sbjct: 263 AVENMARFTLELGGKSPAVVMEDADPSQVAQGIATGIFFHQGQVCTASSRLLVHRSLYRR 322 Query: 300 FVAELVDRAESLDVGPGTD--HEMGPQVSESELSSTLEYIDIAEAEGATLVAGGGVPEGE 357 + EL A+ + +G G D + GP S++ + +++I A+AEGATLVAGG Sbjct: 323 VLDELAGIAQGMRIGSGFDAATQFGPLTSKAHFARVMDFIASAKAEGATLVAGG----ER 378 Query: 358 AVETGHFVEPTVFTDVDPDMRIAQEEVFGPVVAVIEVSDFDEGLAVANDVDYGLSASIVT 417 + G FV+PT+F D MR+ +EEVFGPV+AV D ++ +A AND YGL+AS+ T Sbjct: 379 VHDAGCFVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDVEDAIAAANDTPYGLAASLWT 438 Query: 418 DDHTEANRFVDEVEAGVVKVNDKTTGLELHVPFGGFKRSSSETWREQGDAGLDFYTIEKT 477 + A+R V ++AGVV VN L+ +P GG K+S T R+ G A ++ +T K+ Sbjct: 439 QSLSHAHRIVPRLQAGVVWVNAHNV-LDAGLPLGGIKQSG--TGRDLGRAAVEGFTELKS 495 Query: 478 V 478 V Sbjct: 496 V 496 Lambda K H 0.310 0.130 0.370 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 581 Number of extensions: 23 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 500 Length adjustment: 34 Effective length of query: 448 Effective length of database: 466 Effective search space: 208768 Effective search space used: 208768 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory