Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate Ac3H11_255 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26)
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_255 Length = 478 Score = 718 bits (1854), Expect = 0.0 Identities = 353/478 (73%), Positives = 404/478 (84%) Query: 4 VTYTDTQLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWR 63 +TY +TQL I G+W DA GKT+ V NPATGK IGRVAHA DLDRAL AAQ GFEAWR Sbjct: 1 MTYPNTQLFIAGQWQDAVEGKTLAVFNPATGKEIGRVAHATKVDLDRALDAAQKGFEAWR 60 Query: 64 KVPAHERAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRR 123 +PA ERA TMR+AAAL+RERA+AIA +M QEQGKPL EA+VE +++ADIIEWFADE R Sbjct: 61 DIPAAERAKTMRRAAALMRERAEAIAAIMVQEQGKPLAEAKVETMASADIIEWFADESLR 120 Query: 124 VYGRIVPPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEET 183 VYGRIVP RNL AQQ V+K+PVGPVAAFTPWNFP+NQVVRKL+AALA GCS LVKAPEET Sbjct: 121 VYGRIVPSRNLKAQQMVLKDPVGPVAAFTPWNFPINQVVRKLAAALAAGCSILVKAPEET 180 Query: 184 PASPAALLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLA 243 PASPA L+RAF DAGVP G +GLVYGDPAEISSYLIPHP+IRKVTFTGSTPVGKQLA+LA Sbjct: 181 PASPAELIRAFADAGVPVGTVGLVYGDPAEISSYLIPHPIIRKVTFTGSTPVGKQLAALA 240 Query: 244 GLHMKRATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEF 303 G HMKR TMELGGHAPVIVAEDAD+ LA+K + GAKFRNAGQVCISPTR+LVH +IR +F Sbjct: 241 GKHMKRVTMELGGHAPVIVAEDADLELAIKISSGAKFRNAGQVCISPTRYLVHENIRADF 300 Query: 304 TRALVKHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEG 363 K+A+GLKVG+GL GT +G LANPRR+TAMA ++ +A + GA + GGERIGSEG Sbjct: 301 VAGFAKYAQGLKVGDGLTAGTQMGPLANPRRITAMADLLADAVQQGAKVLAGGERIGSEG 360 Query: 364 NFFAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFAN 423 NFFAPTV+ +VPL A + N EPFGPVAA+RGF K+E+AIAEANRLPFGLAGYAFT S N Sbjct: 361 NFFAPTVLNDVPLSARIVNEEPFGPVAAVRGFTKIEDAIAEANRLPFGLAGYAFTTSLKN 420 Query: 424 VHLLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVTVMAV 481 HLL QRLEVGMLWINQ A P E+PFGG+KDSGYGSEGGPEA+E ++ T+ V++M V Sbjct: 421 AHLLAQRLEVGMLWINQAAAPAAELPFGGLKDSGYGSEGGPEAIEAHMNTRLVSIMNV 478 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 830 Number of extensions: 31 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 478 Length adjustment: 34 Effective length of query: 447 Effective length of database: 444 Effective search space: 198468 Effective search space used: 198468 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory