Align Probable 2-ketoarginine decarboxylase AruI; 2-oxo-5-guanidinopentanoate decarboxylase; 5-guanidino-2-oxopentanoate decarboxylase; EC 4.1.1.75 (characterized)
to candidate Ac3H11_1601 Acetolactate synthase large subunit (EC 2.2.1.6)
Query= SwissProt::Q9HUI8 (559 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1601 Length = 561 Score = 166 bits (421), Expect = 2e-45 Identities = 153/520 (29%), Positives = 232/520 (44%), Gaps = 49/520 (9%) Query: 31 TAGQALVRLLANYGVDTVFGIPGVHTLELYRGLPGSGIRHVLTRHEQGAGFMADGYARVS 90 T GQ LV+ L +GV +F +PG L + L + I + R E GA MA+ +++ Sbjct: 10 TGGQILVQQLITHGVKQLFCVPGESYLAVLDALHDADIGVTVCRQEGGAAMMAEAQGKLT 69 Query: 91 GKPGVCFVITGPGVTNVATAIGQAYADSVPLLVISSVNHSASLGKGWGCLHETQDQRAMT 150 G+PG+CFV GPG TN + + A+ DS P+++ ++G+ + D A+ Sbjct: 70 GQPGICFVTRGPGATNASAGVHIAHQDSTPMILFVGQVARGAMGRE---AFQELDYSAVF 126 Query: 151 APITAFSALALSPEQLPELIARAYAVFDSERPRPVHISIPLDVL--AAPVAHDWSAAVAR 208 + + P ++PELI+RA+ V S RP PV +++P D+L AA VA A+ Sbjct: 127 GTMAKWVVQIDDPARVPELISRAFHVATSGRPGPVVVALPEDMLTEAATVAD----ALPY 182 Query: 209 RPGRGVPCSEALRAAAERLAAARRPMLIAGGGALA--AGEALAALSERLAAPLFTSVAGK 266 + P + L A+RL AA+ P+ I GG + A A +E + P++ S + Sbjct: 183 QVTETHPGAAQLAELAQRLQAAKNPVAILGGSRWSEEAVREFTAFAEAWSIPVYCSFRRQ 242 Query: 267 GLLPPDAPLNAG-ASLCVAPG-WEMIAEADLVLAVG---TEMADTDFWRERLPLSGE-LI 320 L P G L V P I +DLVL VG +E+ + +P + + Sbjct: 243 MLFPATHACYGGDLGLGVNPKLLARIKASDLVLVVGGRLSEVPSQGYELFDIPTPAQSFV 302 Query: 321 RVDIDPRKFNDFYPSAVALRGDARQTLEALLVRLPQEARDSAPAAARVARLRAEIRAAHA 380 V D + Y A+ + AL R +A A +A AAHA Sbjct: 303 HVHADADELGKLYRPTQAIHATPQAFTAAL-----NAVRPTASVA-----WKAHTEAAHA 352 Query: 381 PLQALHQ-------------AILDRIAAALPADAFVSTDMTQLAYTGNYAFASRAPRSWL 427 A ++ + + LPAD A + + S L Sbjct: 353 EYLAWSDPAPIRIPGNLQMGEVMQHLKSVLPADTIFCNGAGNFATWVHRFWPFTTYASQL 412 Query: 428 HPTGYGTLGYGLPAGIGAKLGAPQRPGLVLVGDGGFLYTAQELATASEELDSPLVVLLWN 487 PT G++GYGLPAG+G K PQR +V GDG FL QE ATA + P++V+L + Sbjct: 413 APTS-GSMGYGLPAGVGGKRLWPQREVVVFAGDGDFLMHGQEFATA-VQYGLPILVVLLD 470 Query: 488 NDALGQIRDDMLGLDIEPVGVLP----RNPDFALLGRAYG 523 N G IR + + E G + +NPDF +A+G Sbjct: 471 NAMYGTIR---MHQEREYPGRISATQLKNPDFKAYAQAFG 507 Lambda K H 0.321 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 738 Number of extensions: 47 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 561 Length adjustment: 36 Effective length of query: 523 Effective length of database: 525 Effective search space: 274575 Effective search space used: 274575 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory