Align 4-(gamma-glutamylamino)butanal dehydrogenase (EC 1.2.1.99) (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= BRENDA::P23883 (495 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 343 bits (879), Expect = 1e-98 Identities = 210/502 (41%), Positives = 283/502 (56%), Gaps = 11/502 (2%) Query: 1 MNFHHLAYWQDKALSLAIENRL--FINGEYTAAAENETFETVDPVTQAPLAKIARGKSVD 58 MN L+ Q + E R+ I G A DP T+ +A+ + D Sbjct: 1 MNPFDLSSQQLQGAKFLSERRVGNVIGGVSGPALSGRWLPVTDPATEMVVAEAPDSDAAD 60 Query: 59 IDRAMSAARGVFERGDWSLSSPAKRKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLR 118 I RA+++A+ F+ W PA R+ +L +L++L+E HA+EL+ LETL +GK + Sbjct: 61 IARAVASAQRAFDSHVWRGLRPADREKLLFRLSELIERHADELSALETLQSGKLQGIARA 120 Query: 119 DDIPGAARAIRWYAEAIDKVYGEVATTS-----SHELAMIVREPVGVIAAIVPWNFPLLL 173 D+ A +R+ A K+ G+ S + REPVGV+ AIVPWNFPL + Sbjct: 121 IDVQAGAEFVRYMAGWATKLEGQTLDNSIPIPGPQWVTYTRREPVGVVGAIVPWNFPLAI 180 Query: 174 TCWKLGPALAAGNSVILKPSEKSPLSAIRLAGLAKEAGLPDGVLNVVTGFGHEAGQALSR 233 WK+ PALAAG +V+LKPSE +PL+A+RLA LA EAG+P+GVLNVV G G AG AL Sbjct: 181 ALWKIAPALAAGCTVVLKPSEDTPLTALRLAHLALEAGIPEGVLNVVCGRGATAGAALIA 240 Query: 234 HNDIDAIAFTGSTRTGKQLLKDAGDSNMKRVWLEAGGKSANIVFADCPDLQQAASATAAG 293 H + ++FTGST GK ++ A NM R LE GGKS +V D D Q A A G Sbjct: 241 HPGVRKLSFTGSTAVGK-VVGHAAVENMARFTLELGGKSPAVVMEDA-DPSQVAQGIATG 298 Query: 294 IFYNQGQVCIAGTRLLLEESIADEFLALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSV 353 IF++QGQVC A +RLL+ S+ L L AQ + G D AT G L AH V Sbjct: 299 IFFHQGQVCTASSRLLVHRSLYRRVLDELAGIAQGMRIGSGFDAATQFGPLTSKAHFARV 358 Query: 354 HSFIREGESKGQLLLDG--RNAGLAAAIGPTIFVDVDPNASLSREEIFGPVLVVTRFTSE 411 FI +++G L+ G R + PTIF D + REE+FGPVL V F Sbjct: 359 MDFIASAKAEGATLVAGGERVHDAGCFVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDV 418 Query: 412 EQALQLANDSQYGLGAAVWTRDLSRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGN 471 E A+ AND+ YGL A++WT+ LS AHR+ RL+AG V+VN +N D +P GG KQSG Sbjct: 419 EDAIAAANDTPYGLAASLWTQSLSHAHRIVPRLQAGVVWVNAHNVLDAGLPLGGIKQSGT 478 Query: 472 GRDKSLHALEKFTELKTIWISL 493 GRD A+E FTELK++ +++ Sbjct: 479 GRDLGRAAVEGFTELKSVCMAV 500 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 581 Number of extensions: 28 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 500 Length adjustment: 34 Effective length of query: 461 Effective length of database: 466 Effective search space: 214826 Effective search space used: 214826 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory