Align 4-guanidinobutyraldehyde dehydrogenase (EC 1.2.1.54) (characterized)
to candidate Ac3H11_1486 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase (EC 1.2.1.60)
Query= metacyc::MONOMER-11560 (497 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1486 Length = 485 Score = 345 bits (885), Expect = 2e-99 Identities = 206/464 (44%), Positives = 271/464 (58%), Gaps = 13/464 (2%) Query: 33 SGETFECLSPVDGRFLAKVASCDLADANRAVENARATFNSGVWSQLAPAKRKAKLIR-FA 91 S E FE ++P LA+VAS A+ + AV A+ F + W+ L PA +AKL+R Sbjct: 14 SREYFETVNPATQEVLAEVASGGAAEVHAAVAAAKDAFPA--WAGL-PAPERAKLVRKLG 70 Query: 92 DLLRKNVEELALLETLDMGKPIGDSSSIDIPGAAQAIHWTAEAIDKVYDEVAPTPHDQLG 151 DL+ V LAL ET D G+ IG + IP AA ++ AE +V PTP L Sbjct: 71 DLIAAEVPTLALTETKDTGQVIGQTGKALIPRAADNFYYFAEMCTRVDGHTYPTP-THLN 129 Query: 152 LVTREPVGVVGAIVPWNFPLLMACWKLGPALATGNSVVLKPSEKSPLTAIRIAQLAIEAG 211 PVGV I PWN P + + WK+ PALA GN+ VLK SE SPLTA R+ +LA+EAG Sbjct: 130 YTLFHPVGVCALISPWNVPFMTSTWKVAPALAFGNTAVLKMSELSPLTAARLGELALEAG 189 Query: 212 IPAGVLNVLPGYGHTVGKALALHMDVDTLVFTGSTKIAKQLMVYAGESNMKRIWLEAGGK 271 IPAGVLNV+ GYG G+ L H DV + FTGST +++ AG +K+ +E GGK Sbjct: 190 IPAGVLNVVHGYGKDAGEPLCTHPDVRAISFTGSTATGNRIVQAAG---LKKFSMELGGK 246 Query: 272 SPNIVFADAPDLQAAAEAAASAIAFNQGEVCTAGSRLLVERSIKDKFLPMVVEALKGWKP 331 SP +VFADA DL A +AA I N GE CTAGSR+LV++SI F + Sbjct: 247 SPFVVFADA-DLDRALDAALFMIFSNNGERCTAGSRILVQKSIYADFAEKFAARARRIVV 305 Query: 332 GNPLDPQTTVGALVDTQQMNTVLSYIEAGHKDGAKLLAGGKRTLEETG----GTYVEPTI 387 G+PLD +T VG ++ + V SYIE G K+GA LL GG T + G +V PT+ Sbjct: 306 GDPLDEKTIVGPMISQAHLAKVRSYIELGPKEGATLLCGGLGTPDLPAHLQKGNFVLPTV 365 Query: 388 FDGVTNAMRIAQEEIFGPVLSVIAFDTAEEAVAIANDTPYGLAAGIWTSDISKAHKTARA 447 F V N M+IAQEEIFGPV +I F+ EA+ +AND YGL++ +WT +I +AH+ A Sbjct: 366 FADVDNRMKIAQEEIFGPVACLIPFEDEAEAIRLANDIQYGLSSYVWTENIGRAHRVAAG 425 Query: 448 VRAGSVWVNQYDGGDMTAPFGGFKQSGNGRDKSLHALEKYTELK 491 + AG +VN + D+ PFGG K SG GR+ + E + E K Sbjct: 426 IEAGMCFVNSQNVRDLRQPFGGTKGSGTGREGGTWSYEVFLEPK 469 Lambda K H 0.316 0.132 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 608 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 485 Length adjustment: 34 Effective length of query: 463 Effective length of database: 451 Effective search space: 208813 Effective search space used: 208813 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory