Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate Ac3H11_4393 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= BRENDA::B6ECN9 (505 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_4393 Length = 507 Score = 326 bits (836), Expect = 1e-93 Identities = 199/486 (40%), Positives = 273/486 (56%), Gaps = 26/486 (5%) Query: 14 FIDGEWREPLKKNRLPIINPANEEIIGYIPAATEEDVDMAVKAARSALRRDDWGSTTGAQ 73 FI G++ P+K +I P + ++ +T ED+++A+ AA +A D WG T A Sbjct: 23 FIGGKFVPPVKGQYFDVITPVSGKVYTRAARSTAEDIELALDAAHAAA--DSWGKTDAAT 80 Query: 74 RAKYLRAIAAKVLEKKPELATLETIDNGKPWFEAAS-DIDDVVACFEYYADLAEA----L 128 RA L IA ++ E LA ET+DNGK E + DI V F Y+A A L Sbjct: 81 RANILLKIANRIEENLERLAYAETVDNGKAIRETLNADIPLTVDHFRYFAGCVRAQEGAL 140 Query: 129 DSKKQTEVKLHLDSFKTHVLREPLGVVGLITPWNYPLLMTTWKVAPALAAGCAAILKPSE 188 + + V H+ +EPLGVVG I PWN+P+LM WK+APAL AG +LKP+E Sbjct: 141 SNIDENTVAYHI--------QEPLGVVGQIIPWNFPILMAAWKLAPALGAGNCVVLKPAE 192 Query: 189 LASITSLELGEICREVGLPPGALSILTGLGHEAGSPLVSHPDVDKIAFTGSGPTGVKIMT 248 I+ L L E+ ++ LPPG L+I+ G G EAG PL + KIAFTGS TG I Sbjct: 193 STPISILILVELIADL-LPPGVLNIVNGFGREAGMPLAQSKRIAKIAFTGSTSTGRVIAQ 251 Query: 249 AAAQLVKPVTLELGGKSPIVVFDDIHN-----LDTAVEWTLFGCFWTNGQICSATSRLII 303 AAA + P TLELGGKSP + F DI + LD A+E + F G++C+ SR II Sbjct: 252 AAANNLIPATLELGGKSPNIFFADIMDKDDAFLDKAIEGLVLFAF-NQGEVCTCPSRAII 310 Query: 304 QETIAPQFLARLLEWTKNIKISDPLEEDCKLGPVISRGQYEKILKFISTAKDEGATILYG 363 QE+I QF+ R+L+ IK +PL+ D +G S+ Q KIL ++ K EGA +L G Sbjct: 311 QESIYDQFMERVLKRVAAIKHQNPLDTDSMMGAQASKEQLTKILSYLDLGKQEGAEVLAG 370 Query: 364 GDRPE---HLKKGYYIQPTIITDVDTSMEIWKEEVFGPVLCVKTFKTEEEAIELANDTKF 420 G + L+ GYY+QPT+ M I++EE+FGPVL V TFK E EA+ +ANDT + Sbjct: 371 GGQAHLGGDLEGGYYVQPTLFKG-HNKMRIFQEEIFGPVLAVTTFKDEAEALAIANDTLY 429 Query: 421 GLGAAILSKDLERCERFTKAFQSGIVWINCSQPCFWQPPWGGKKRSGFGRELGEWSLENY 480 GLGA + S++ R +A ++G VW NC +GG K SG GRE + L++Y Sbjct: 430 GLGAGVWSRNGNVAYRMGRAIKAGRVWTNCYHAYPAHAAFGGYKESGIGRETHKMMLDHY 489 Query: 481 LNIKQV 486 K + Sbjct: 490 QQTKNL 495 Lambda K H 0.318 0.136 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 599 Number of extensions: 30 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 505 Length of database: 507 Length adjustment: 34 Effective length of query: 471 Effective length of database: 473 Effective search space: 222783 Effective search space used: 222783 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory