Align CbtD, component of Cellobiose and cellooligosaccharide porter (characterized)
to candidate Ac3H11_4315 ABC transporter ATP-binding protein
Query= TCDB::Q97VF5 (362 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_4315 ABC transporter ATP-binding protein Length = 568 Score = 181 bits (460), Expect = 3e-50 Identities = 100/259 (38%), Positives = 152/259 (58%), Gaps = 2/259 (0%) Query: 45 ILEVHNLNVIYDEGNSRIIKAVNDVSFGVEKGEILGIIGESGSGKTTLISAILRAIRPPG 104 +LEV NL + Y E + + V+ VSF + GE++ ++GESGSGKTT +I+ + G Sbjct: 12 VLEVENLAIAYREKDHEQ-RVVHGVSFSIAPGEVVALVGESGSGKTTTAQSIIGLLADNG 70 Query: 105 KIISGKVIFNGMDIFSMTIDEFRKLLWKDISYVPQASQNALNPVLPISEIFYHEAISHGE 164 ++ G + NG DI + D F + + +S +PQ ++LNPV E H Sbjct: 71 RVEQGAIRLNGTDIAGWSADRFDTVRGRVVSLIPQDPTSSLNPVRTAGEQVGEILQIHRY 130 Query: 165 ADKKRVIERASELLKLVGLD-PARVLKMYPFQLSGGMKQRVMIALSLLLNPKLILMDEPT 223 D++ + +R ELL VGL P + YP +LSGGMKQRV+IA+++ L P LI+ DEPT Sbjct: 131 GDRQAIAQRVVELLAKVGLSQPELRARQYPHELSGGMKQRVLIAIAIALQPALIIADEPT 190 Query: 224 SALDMLNQELLLKLIKNINQEMGVTIVYVTHDILNIAQIANRLLVMYKGYVMEEGKTEEI 283 SALD+ Q +L LI + E G ++ VTHD+ A A+RL+V+ G + E+G T + Sbjct: 191 SALDVTVQRRILDLIDGLRAEFGTAVLLVTHDLGVAADRAHRLVVLQGGRIQEQGDTGSV 250 Query: 284 IKSPLNPYTSLLVSSIPSL 302 +++P + YT L++ PSL Sbjct: 251 LRNPQSAYTRKLLADAPSL 269 Score = 135 bits (341), Expect = 2e-36 Identities = 79/246 (32%), Positives = 140/246 (56%), Gaps = 6/246 (2%) Query: 58 GNSRIIKAVNDVSFGVEKGEILGIIGESGSGKTTLISAILRAIRPPGKIISGKVIFNGMD 117 G +AV+ VSF V +G I+GESGSGKTT I ++ +P +G ++ GMD Sbjct: 307 GRKEPFRAVDGVSFRVRRGTTHAIVGESGSGKTTTIRNVVGFRQPT----AGHIVIEGMD 362 Query: 118 IFSMTIDEFRKLLWKDISYVPQASQNALNPVLPISEIFYHEAISHGEADKKRVIERASEL 177 + ++ + R+ + + V Q ++L+P I +I ++ R ++ Sbjct: 363 LTTLRGEALRQFR-RTVQLVYQNPFSSLDPRQTIFQIIEEPLLNFDPLPAAERARRVHDI 421 Query: 178 LKLVGLDPARVLKMYPFQLSGGMKQRVMIALSLLLNPKLILMDEPTSALDMLNQELLLKL 237 L VGL P VL+ P LSGG +QRV IA +L+L P+++++DE SALD+ Q +L L Sbjct: 422 LARVGLPPT-VLERRPRALSGGQRQRVAIARALILQPRVLVLDEAVSALDVTVQAQILAL 480 Query: 238 IKNINQEMGVTIVYVTHDILNIAQIANRLLVMYKGYVMEEGKTEEIIKSPLNPYTSLLVS 297 ++ + +++G+T ++++HD+ + QIA+ + V+ G ++ G+ E++ P + YT L++ Sbjct: 481 LETLQRDLGLTYLFISHDLAVVRQIADTVSVLQGGRQVDAGRVEDVFLRPGSDYTRELIA 540 Query: 298 SIPSLK 303 +IP K Sbjct: 541 AIPGKK 546 Lambda K H 0.319 0.138 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 448 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 362 Length of database: 568 Length adjustment: 33 Effective length of query: 329 Effective length of database: 535 Effective search space: 176015 Effective search space used: 176015 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory