Align phosphogluconate dehydratase (EC 4.2.1.12) (characterized)
to candidate Ac3H11_954 Dihydroxy-acid dehydratase (EC 4.2.1.9)
Query= BRENDA::Q1PAG1 (608 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_954 Dihydroxy-acid dehydratase (EC 4.2.1.9) Length = 567 Score = 226 bits (576), Expect = 2e-63 Identities = 159/510 (31%), Positives = 255/510 (50%), Gaps = 29/510 (5%) Query: 68 VAIVSSYNDMLSAHQPYEHFPEQIKKALREMGSVGQFAGGTPAMCDGVTQGEAGMELSLP 127 V + + ++ + + + + + E G Q G TP + DG+ G GM+ SL Sbjct: 46 VGVANGHSTITPCNSGLQKLADAAIAGIEEAGGNAQVFG-TPTISDGMAMGTEGMKYSLV 104 Query: 128 SREVIALSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMPSGISN 187 SREVI+ + D L++G CDK +PG +MG LR ++P I+V GG + G Sbjct: 105 SREVISDCIETCVGGQWMDGVLVVGGCDKNMPGGLMGMLR-ANVPAIYVYGGTILPGHYQ 163 Query: 188 KEKADVRQRY------AEGKATREELLESEMKSYHSPGTCTFYGTANTNQLLMEVMGLHL 241 + ++ + A GK + +L E E ++ G+C TANT E +G+ L Sbjct: 164 GKDLNIVSVFEAVGENAAGKLSDFDLKEIEKRAIPGTGSCGGMYTANTMSSAFEALGISL 223 Query: 242 PGAS-FVNPYTPLRDALTHEAAQQVTRLTKQSGNFTPIGEIVDERSLVNSIVALHATGGS 300 P +S NP+ ++ A + + K + P +IV ++S+ N++ + ATGGS Sbjct: 224 PYSSTMANPHDEKMNSAKESAKVLIEAIKK---DIKP-RDIVTKKSIENAVAVIMATGGS 279 Query: 301 TNHTLHMPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPNGKADINHFQAAGGMAFLIREL 360 TN LH AIA AAG++ + D + P L + P+GK AGG+ +++ L Sbjct: 280 TNAVLHFLAIAHAAGVEWSIDDFERVRVKTPVLCDLKPSGKYLAVDLHRAGGIPQVMKVL 339 Query: 361 LEAGLLHEDVNTVAGRGLSRYTQEPFLDNGKLVWRDGPIE-SLDENILRPVARAFSPEGG 419 L AGLLH D T+ G+ ++ V +D P + D++++RP+ +G Sbjct: 340 LNAGLLHGDCLTIEGKTVAE------------VLKDVPDQPRADQDVIRPINNPMYAQGH 387 Query: 420 LRVMEGNLGRGVMKVSAVALQHQIVEAPAVVFQDQQDLADAFKAGELEKDFVAVMRFQGP 479 L +++GNL L++ ++ PA VF+D+Q +A AG+++ V V+R+ GP Sbjct: 388 LAILKGNLSPEGAVAKITGLKNPVITGPARVFEDEQSALEAILAGKIKAGDVMVLRYLGP 447 Query: 480 RSN-GMPELHKMTPFLGVLQDRGFKVALVTDGRMSGASGKIPAAIHVSPEAQVGGALARV 538 + GMPE+ T L + G V L+TDGR SG + + HV+PEA GG +A V Sbjct: 448 KGGPGMPEMLAPTGAL-IGAGLGESVGLITDGRFSGGTWGMVVG-HVAPEAAAGGTIAFV 505 Query: 539 RDGDIIRVDGVKGTLELKVDADEFAAREPA 568 +GD I +D + LEL V +E A R A Sbjct: 506 HEGDSITIDARQLLLELNVSEEEIARRRAA 535 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 900 Number of extensions: 57 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 567 Length adjustment: 37 Effective length of query: 571 Effective length of database: 530 Effective search space: 302630 Effective search space used: 302630 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory