GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Acidovorax sp. GW101-3H11

Align Aconitate hydratase A; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; Iron-responsive protein-like; IRP-like; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate Ac3H11_2323 2-methylcitrate dehydratase FeS dependent (EC 4.2.1.79)

Query= SwissProt::Q937N8
         (869 letters)



>FitnessBrowser__acidovorax_3H11:Ac3H11_2323
          Length = 889

 Score = 1391 bits (3601), Expect = 0.0
 Identities = 705/875 (80%), Positives = 771/875 (88%), Gaps = 9/875 (1%)

Query: 1   MNSANRKPLPGTKLDYFDARAAVEAIQPGAYDKLPYTSRVLAENLVRRCDPATLTDSLLQ 60
           MN+  R+PLPGT LDYFDARAAVE +QPGA+  LPYT+RV AE++VRR DPAT+ D L Q
Sbjct: 2   MNTLFRRPLPGTDLDYFDARAAVETLQPGAWATLPYTARVHAESIVRRADPATVNDCLRQ 61

Query: 61  LVGRKRDLDFPWFPARVVCHDILGQTALVDLAGLRDAIADQGGDPAKVNPVVPVQLIVDH 120
           L+ RKRD DFPW+PARVVCHDILGQTALVDLAGLRDAIA  GGDPA+VNPVVPVQLIVDH
Sbjct: 62  LIERKRDRDFPWYPARVVCHDILGQTALVDLAGLRDAIAKGGGDPAQVNPVVPVQLIVDH 121

Query: 121 SLAVECGGFDPDAFAKNRAIEDRRNEDRFHFIDWTKQAFKNVDVIPPGNGIMHQINLEKM 180
           SLAVECGGFDPDAFAKNRAIEDRRNEDRFHFI+WTK+AF NVDVIP GNGIMHQINLEKM
Sbjct: 122 SLAVECGGFDPDAFAKNRAIEDRRNEDRFHFIEWTKKAFANVDVIPAGNGIMHQINLEKM 181

Query: 181 SPVIHADNGVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRASWMRLPDIVGV 240
           SPV+HAD GVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRAS MRLP++VGV
Sbjct: 182 SPVVHADRGVAYPDTCVGTDSHTPHVDALGVIAIGVGGLEAENVMLGRASMMRLPEMVGV 241

Query: 241 ELTGKRQPGITATDIVLALTEFLRKEKVVGAYLEFRGEGASSLTLGDRATISNMAPEYGA 300
           ELTG+RQ GITATD+VLALTEFLRK KVVGAYLEF GEGA+ LTLGDRATISNMAPEYGA
Sbjct: 242 ELTGQRQDGITATDVVLALTEFLRKAKVVGAYLEFFGEGAAKLTLGDRATISNMAPEYGA 301

Query: 301 TAAMFFIDEQTIDYLRLTGRTDEQLKLVETYARTAGLWADSLKNAEYERVLKFDLSSVVR 360
           TAA+F IDEQT+DYLRLTGR   Q+KLVETYA+TAGLWAD+L  A Y+R L+FDLS+VVR
Sbjct: 302 TAALFCIDEQTLDYLRLTGREARQVKLVETYAKTAGLWADALAGAVYDRTLRFDLSTVVR 361

Query: 361 NMAGPSNPHKRLPTSALAERGIAVDLDKASAQEAEGLMPDGAVIIAAITSCTNTSNPRNV 420
           N+AGPSNPH R+ TS LA RGIA     A     EG MPDGAV+IAAITSCTNTSNPRNV
Sbjct: 362 NLAGPSNPHARVATSDLAARGIAGPW--ALPSPGEGTMPDGAVVIAAITSCTNTSNPRNV 419

Query: 421 IAAALLARNANARGLARKPWVKSSLAPGSKAVELYLEEANLLPDLEKLGFGIVAFACTTC 480
           IAAALLARNA+  GL RKPWVK+SLAPGS+ VELYL+EA LL DLE LGFGIVAFACTTC
Sbjct: 420 IAAALLARNAHRLGLTRKPWVKTSLAPGSRVVELYLKEAGLLTDLEALGFGIVAFACTTC 479

Query: 481 NGMSGALDPKIQQEIIDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGTI 540
           NGMSGALDP IQQEIIDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGT+
Sbjct: 480 NGMSGALDPAIQQEIIDRDLYATAVLSGNRNFDGRIHPYAKQAFLASPPLVVAYAIAGTV 539

Query: 541 RFDIEKDVLGTDQDGKPVYLKDIWPSDEEIDAIVAKSVKPEQFRKVYEPMFAITAASGES 600
           RFDIEKDVL    DG+P+ LKD+WPSDEEIDA+V  +VKP  +R VYEPMFAI    G  
Sbjct: 540 RFDIEKDVLAV-VDGQPIRLKDLWPSDEEIDAVVKAAVKPAHYRAVYEPMFAIRHDDGPR 598

Query: 601 VSPLYDWRPQSTYIRRPPYWE----GALAGE-RTLKALRPLAVLGDNITTDHLSPSNAIM 655
           VSP YDWRPQSTYIRRPPYW+    GALA   RTL+ +RPLA+L DNITTDHLSPSNAI+
Sbjct: 599 VSPQYDWRPQSTYIRRPPYWDTEGIGALAAHPRTLQGMRPLALLPDNITTDHLSPSNAIL 658

Query: 656 LNSAAGEYLARMGLPEEDFNSYATHRGDHLTAQRATFANPTLINEMAVVDGQVKKGSLAR 715
            +SAAGEYLARMGLPEEDFNSYATHRGDHLTA RATFANP L+NEMAVVDG+V+KGSLAR
Sbjct: 659 PDSAAGEYLARMGLPEEDFNSYATHRGDHLTALRATFANPQLVNEMAVVDGKVQKGSLAR 718

Query: 716 IEPEGKVVRMWEAIETYMDRKQPLIIIAGADYGQGSSRDWAAKGVRLAGVEVIVAEGFER 775
           +EPEG+V+RMWEAIETY+ R+QPLIIIAGADYGQGSSRDWAAKGVRLAGVEV+VAEGFER
Sbjct: 719 VEPEGQVMRMWEAIETYLHRRQPLIIIAGADYGQGSSRDWAAKGVRLAGVEVVVAEGFER 778

Query: 776 IHRTNLIGMGVLPLEFKPGVNRLTLGLDGTETYDVIGERQPRATLTLVVNRKNGERVEVP 835
           IHRTNLIGMGVLPLEF+ GVNR TL L+GTE Y V G+ +P AT+TLVV RK GE V+VP
Sbjct: 779 IHRTNLIGMGVLPLEFEAGVNRTTLQLEGTEVYGVEGDLKPGATVTLVVQRKLGEVVKVP 838

Query: 836 VTCRLDSDEEVSIYEAGGVL-HFAQDFLESSRATA 869
           + CRLD+ EEVS+YEAGGVL  FAQDFL +    A
Sbjct: 839 MRCRLDTAEEVSVYEAGGVLQRFAQDFLAARAGAA 873


Lambda     K      H
   0.318    0.135    0.398 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2236
Number of extensions: 92
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 869
Length of database: 889
Length adjustment: 43
Effective length of query: 826
Effective length of database: 846
Effective search space:   698796
Effective search space used:   698796
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory