Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= BRENDA::Q8VWZ1 (503 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 348 bits (893), Expect = e-100 Identities = 196/472 (41%), Positives = 280/472 (59%), Gaps = 12/472 (2%) Query: 19 PILNKR-IPNINPSTENIIGDIPAATKEDVDLAVDAAKRAISRKNGRDWSAASGSLRARY 77 P L+ R +P +P+TE ++ + P + D+ AV +A+RA + W + R + Sbjct: 32 PALSGRWLPVTDPATEMVVAEAPDSDAADIARAVASAQRAF---DSHVWRGLRPADREKL 88 Query: 78 LRAIAAKIKEKKDELGKLESIDCGKPLEEALADLDDVVACFE---YYAGLAEELDSKQ-K 133 L ++ I+ DEL LE++ GK + +A DV A E Y AG A +L+ + Sbjct: 89 LFRLSELIERHADELSALETLQSGKL--QGIARAIDVQAGAEFVRYMAGWATKLEGQTLD 146 Query: 134 APISLPMDTFKSYILKEPIGVVALITPWNYPFLMATWKIAPALAAGCAAILKPSELASVT 193 I +P + +Y +EP+GVV I PWN+P +A WKIAPALAAGC +LKPSE +T Sbjct: 147 NSIPIPGPQWVTYTRREPVGVVGAIVPWNFPLAIALWKIAPALAAGCTVVLKPSEDTPLT 206 Query: 194 CLELGEICKEVGLPRGVLNIVTGLGHEAGASLASHPDVDKISFTGSSATGSKIMTTAAQL 253 L L + E G+P GVLN+V G G AGA+L +HP V K+SFTGS+A G + A + Sbjct: 207 ALRLAHLALEAGIPEGVLNVVCGRGATAGAALIAHPGVRKLSFTGSTAVGKVVGHAAVEN 266 Query: 254 VKPVSLELGGKSPIVVFEDVDLDKVAEWTVFGCFFTNGQICSATSRLIVHESIAVEFVDK 313 + +LELGGKSP VV ED D +VA+ G FF GQ+C+A+SRL+VH S+ +D+ Sbjct: 267 MARFTLELGGKSPAVVMEDADPSQVAQGIATGIFFHQGQVCTASSRLLVHRSLYRRVLDE 326 Query: 314 LVKWAENIKISDPLEEGCRLGPIVSEAQYKKVLNCISSAKSEGATILTGGRRPEHLKKGY 373 L A+ ++I + + GP+ S+A + +V++ I+SAK+EGAT++ GG R G Sbjct: 327 LAGIAQGMRIGSGFDAATQFGPLTSKAHFARVMDFIASAKAEGATLVAGGERVH--DAGC 384 Query: 374 FVEPTIITDVTTSMQIWREEVFGPVLAVKTFSTEEEAINLANDTHYGLGSAVMSNDLERC 433 FV+PTI D T M++ REEVFGPVLAV F E+AI ANDT YGL +++ + L Sbjct: 385 FVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDVEDAIAAANDTPYGLAASLWTQSLSHA 444 Query: 434 ERLSKALQAGIVWINCAQPSFIQAPWGGIKRSGFGRELGEWGLENYLSVKQV 485 R+ LQAG+VW+N P GGIK+SG GR+LG +E + +K V Sbjct: 445 HRIVPRLQAGVVWVNAHNVLDAGLPLGGIKQSGTGRDLGRAAVEGFTELKSV 496 Lambda K H 0.317 0.134 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 524 Number of extensions: 20 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 503 Length of database: 500 Length adjustment: 34 Effective length of query: 469 Effective length of database: 466 Effective search space: 218554 Effective search space used: 218554 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory