GapMind for catabolism of small carbon sources

 

Alignments for a candidate for etoh-dh-nad in Acidovorax sp. GW101-3H11

Align alcohol dehydrogenase (NADP+) (EC 1.1.1.2); alcohol dehydrogenase [NAD(P)+] (EC 1.1.1.71) (characterized)
to candidate Ac3H11_4515 NADH-dependent butanol dehydrogenase A (EC 1.1.1.-)

Query= BRENDA::U6CL97
         (387 letters)



>FitnessBrowser__acidovorax_3H11:Ac3H11_4515
          Length = 387

 Score =  461 bits (1186), Expect = e-134
 Identities = 238/387 (61%), Positives = 284/387 (73%), Gaps = 2/387 (0%)

Query: 1   MLNFTLHTPTKILFGEGQIAELGKEIPADARILITYGGGSVKHNGVLDQVYRALEGRNVR 60
           MLNF  H PT I FG+G+IA+L K +PA A++LI  GG S +  G L +V  AL  R   
Sbjct: 1   MLNFDFHNPTHIAFGQGRIADLAKLVPAAAKVLILVGGASAEKTGTLAEVRAALGERPHA 60

Query: 61  EFSGIEPNPTYETLMKAVEVVRAEKIDFLLAVGGGSVVDGTKFIAAAADYQAAQDPWHIL 120
            FSGIEPNP++ET MKAV  +R    DFLLAVGGGSV+D  KFIAAA  ++   DPW IL
Sbjct: 61  TFSGIEPNPSFETSMKAVAQIREGGFDFLLAVGGGSVIDAVKFIAAAVRFEG-DDPWAIL 119

Query: 121 QTGGAEIDRGVALAAVLTLPATGSESNNGAVITRKSTNDKLAFRSPHTQPLFAVLDPVVT 180
           +  G  I   +   AVLTLPATGSE NNG VIT ++   KLAF S HT P+F+VLDP  T
Sbjct: 120 EKHGRNIQDAMPFGAVLTLPATGSEMNNGGVITHRAKGAKLAFGSHHTYPVFSVLDPTKT 179

Query: 181 YTLPARQIANGVVDAFVHTVEQYLTYSVDAKVQDRFAEGLLLTLVEEGPRALAEPEN-YK 239
           YTLP +Q+ANGVVDAFVHTVEQYLTY V+A VQDRFAEG+L TL+E GPR L   E  Y 
Sbjct: 180 YTLPPQQLANGVVDAFVHTVEQYLTYPVNAPVQDRFAEGILQTLIEIGPRLLTAQEPVYD 239

Query: 240 VRANVMWSATMALNGLIGAGVPQDWSTHMLGHELTALHGLDHAQTLAIVLPAMLAARKSQ 299
            RAN+MW+ATMALNGLIGAGVPQDW+THM+GHELTALHG+DHA+TLAIVLPA+L  R+  
Sbjct: 240 DRANLMWAATMALNGLIGAGVPQDWATHMIGHELTALHGIDHARTLAIVLPALLNERRVA 299

Query: 300 KRDKLLQYAERVWNLRDGSEDQRIDGAIAATRDFFEKMGVPTRLSDYQLDGSSIPTLVAK 359
           KR KLLQY ERVW +  G++D+RI  AI  TRDFFE MG+ TRLS Y L G ++  +VA+
Sbjct: 300 KRAKLLQYGERVWGITTGTDDERITAAIERTRDFFESMGIATRLSGYGLGGDTVNAVVAQ 359

Query: 360 LSEHGLTALGEHRDITLEESQKIYEAA 386
           L  HG+  LGE R+IT   S++I EAA
Sbjct: 360 LEAHGMVTLGEQREITPAVSRRILEAA 386


Lambda     K      H
   0.317    0.134    0.383 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 472
Number of extensions: 17
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 387
Length of database: 387
Length adjustment: 30
Effective length of query: 357
Effective length of database: 357
Effective search space:   127449
Effective search space used:   127449
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory