Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate Ac3H11_2881 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= uniprot:D8J111 (520 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_2881 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1) Length = 496 Score = 369 bits (946), Expect = e-106 Identities = 217/495 (43%), Positives = 303/495 (61%), Gaps = 11/495 (2%) Query: 23 IALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILLD 82 + RNV K F V L F L G V+ L+GENGAGKSTLMKIL+G +G++++D Sbjct: 5 VEFRNVTKEFGPVRVLHGVGFALQPGRVYGLLGENGAGKSTLMKILAGYESPTTGEVVVD 64 Query: 83 GKPVEITEP----RQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDELN 138 G + P R A+A GI +IHQE NL + L+ AQNIF+G E ++ GLF+D+ + Sbjct: 65 GA---VRAPGGGSRAAEAQGIVLIHQEFNLADDLTIAQNIFLGHEIKR--GLFLDDKAMR 119 Query: 139 RQAAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAE 198 + A++ L +DP T V +L VA +Q+VEIA+AL+ ++R+LIMDEPTA L E Sbjct: 120 EKTREALAKVGLPLDPDTRVRKLIVAEKQLVEIARALARNARLLIMDEPTATLTPGETER 179 Query: 199 LFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVG 258 LF ++ L+A GV I+YISHK+DE+ + D V VMRDG +A + + ++MVG Sbjct: 180 LFALMAGLKAAGVTIIYISHKLDEVERTTDEVVVMRDGLLVAREATASVTRRQMANLMVG 239 Query: 259 RAL-DGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGEILGFAGLMGAGRTEVAR 317 R L D P + VRGL V F +R+GEILGFAGL+GAGRTE+ Sbjct: 240 RELADLFPPKLPAPQDGAPAITVRGLTVPGWAEGVDFEVRRGEILGFAGLVGAGRTELFE 299 Query: 318 AIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQANIALSSM 377 + G P AG + I G +KSP DA HG+ YLSEDRK GL V ++ N+ L ++ Sbjct: 300 GLLGLRPRTAGTVEIAGQPVQLKSPRDAARHGLTYLSEDRKGKGLHVHFGLRPNLTLMAL 359 Query: 378 GRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWLLRDCDIL 437 R+ + ++D A + A + V++ I+T S+E +A LSGGNQQK+ +AK L ++ Sbjct: 360 ERYAK-PWLDPAAEQAALREAVQEFGIRTGSLEVRASSLSGGNQQKLALAKVLHPGPSVV 418 Query: 438 FFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCEGRITGEL 497 DEPTRG+DVGAK EIY L+ LAEQG A+++ISSEL E++ + HRV VM GR+ L Sbjct: 419 VLDEPTRGVDVGAKREIYHLVQRLAEQGLAVIVISSELMELIGLCHRVAVMRAGRLQTTL 478 Query: 498 ARADATQEKIMQLAT 512 T+E+++ AT Sbjct: 479 QEPHLTEEELIAHAT 493 Score = 90.1 bits (222), Expect = 2e-22 Identities = 65/235 (27%), Positives = 113/235 (48%), Gaps = 13/235 (5%) Query: 287 RAIRDVSFTLRKGEILGFAGLMGAGRTEVARAIFGADPLEAGEIIIHGGKAVIKSPAD-- 344 R + V F L+ G + G G GAG++ + + + G + GE+++ G +++P Sbjct: 18 RVLHGVGFALQPGRVYGLLGENGAGKSTLMKILAGYESPTTGEVVVDGA---VRAPGGGS 74 Query: 345 --AVAHGIGYLSEDRKHFGLAVGMDVQANIALSSMGRFTRVGFMDQRAIREAAQMYVRQL 402 A A GI + ++ F LA + + NI L R F+D +A+RE + + ++ Sbjct: 75 RAAEAQGIVLIHQE---FNLADDLTIAQNIFLGH--EIKRGLFLDDKAMREKTREALAKV 129 Query: 403 AIKTPSVEQQARLLSGGNQQKIVIAKWLLRDCDILFFDEPTRGIDVGAKSEIYKLLDALA 462 + + + R L +Q + IA+ L R+ +L DEPT + G ++ L+ L Sbjct: 130 GLPLDP-DTRVRKLIVAEKQLVEIARALARNARLLIMDEPTATLTPGETERLFALMAGLK 188 Query: 463 EQGKAIVMISSELPEVLRMSHRVLVMCEGRITGELARADATQEKIMQLATQRESA 517 G I+ IS +L EV R + V+VM +G + A A T+ ++ L RE A Sbjct: 189 AAGVTIIYISHKLDEVERTTDEVVVMRDGLLVAREATASVTRRQMANLMVGRELA 243 Score = 78.6 bits (192), Expect = 5e-19 Identities = 58/226 (25%), Positives = 108/226 (47%), Gaps = 9/226 (3%) Query: 39 DNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILLDGKPVEITEPRQAQALG 98 + FE+ GE+ G GAG++ L + L G+ R +G + + G+PV++ PR A G Sbjct: 272 EGVDFEVRRGEILGFAGLVGAGRTELFEGLLGLRPRTAGTVEIAGQPVQLKSPRDAARHG 331 Query: 99 IGIIHQELN---LMNHLSAAQNIFIGREPRKAMGLFID---EDELNRQAAAIFARMRLDM 152 + + ++ L H N+ + R A ++D E R+A F + Sbjct: 332 LTYLSEDRKGKGLHVHFGLRPNLTLMALERYAKP-WLDPAAEQAALREAVQEFGIRTGSL 390 Query: 153 DPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELFRIIRDLQAQGVG 212 + L+ QQ + +AK L V+++DEPT ++ E++ +++ L QG+ Sbjct: 391 E--VRASSLSGGNQQKLALAKVLHPGPSVVVLDEPTRGVDVGAKREIYHLVQRLAEQGLA 448 Query: 213 IVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVG 258 ++ IS ++ EL + RV+VMR G+ T+ + + +I+ G Sbjct: 449 VIVISSELMELIGLCHRVAVMRAGRLQTTLQEPHLTEEELIAHATG 494 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 638 Number of extensions: 35 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 520 Length of database: 496 Length adjustment: 34 Effective length of query: 486 Effective length of database: 462 Effective search space: 224532 Effective search space used: 224532 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory