Align galactofuranose ABC transporter putative ATP binding subunit (EC 7.5.2.9) (characterized)
to candidate Ac3H11_607 Predicted L-arabinose ABC transport system, ATP-binding protein
Query= ecocyc::YTFR-MONOMER (500 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_607 Predicted L-arabinose ABC transport system, ATP-binding protein Length = 517 Score = 447 bits (1150), Expect = e-130 Identities = 247/499 (49%), Positives = 339/499 (67%), Gaps = 9/499 (1%) Query: 9 ILRTEGLSKFFPGVKALDNVDFSLRRGEIMALLGENGAGKSTLIKALTGVYHADRGTIWL 68 +L+ G+ K F G+ L +V +L GEI AL+G+NGAGKSTLIK LTGV A G + L Sbjct: 18 VLQLSGIHKQFAGITVLRDVQLNLYPGEIHALMGQNGAGKSTLIKVLTGVLEASGGQMRL 77 Query: 69 EGQAISPKNTAHAQQLGIGTVYQEVNLLPNMSVADNLFIGREPKRFGLLRRKEME----- 123 GQA+ P + AQ+LGI TVYQEVNL PN+SVA+N+F GR P R G+ + ++ Sbjct: 78 GGQAVWPDSPLAAQRLGISTVYQEVNLCPNLSVAENIFAGRYP-RCGIAQGFRIDWATLH 136 Query: 124 KRATELMASYGFSLDVREPLNRFSVAMQQIVAICRAIDLSAKVLILDEPTASLDTQEVEL 183 +RA +L+A G +DV L+ + VA+QQ+VAI RA+ + ++VLILDEPT+SLD EV+ Sbjct: 137 QRARDLVARIGLQIDVTRLLSDYPVAVQQLVAIARALSIESRVLILDEPTSSLDDDEVQK 196 Query: 184 LFDLMRQLRDRGVSLIFVTHFLDQVYQVSDRITVLRNGSFVGCRETCELPQIELVKMMLG 243 LF+++R+LR G+S++FVTHFL+QVY VSDRITVLRNGS+VG +L L+ MLG Sbjct: 197 LFEVLRRLRSEGLSIVFVTHFLNQVYAVSDRITVLRNGSWVGEWLAKDLGPQALIAAMLG 256 Query: 244 RELDTHALQRAGRTLLSDKPVAAFK--NYGKKGTIAPFDLEVRPGEIVGLAGLLGSGRTE 301 R+L + Q A + + + G+ + P DL++R GE+VGLAGLLGSGRTE Sbjct: 257 RDLAAASEQPAPAPAVDSRHANLLQAEGLGQDTQLQPLDLQIRAGEVVGLAGLLGSGRTE 316 Query: 302 TAEVIFGIKPADSGTALIKGKPQNLRSPHQASVLGIGFCPEDRKTDGIIAAASVRENIIL 361 A ++FG++ D G I G+ +P A G+ CPE+RKTDGI+A SVRENI L Sbjct: 317 LARLLFGLEQPDRGALRIDGQVVKFANPMDAIRHGLALCPEERKTDGIVAELSVRENIAL 376 Query: 362 ALQAQRGWLRPISRKEQQEIAERFIRQLGIRTPSTEQPIEFLSGGNQQKVLLSRWLLTRP 421 ALQA+ G + +SR EQ E+AER+++ LGI+T + ++PI LSGGNQQK +L+RW+ P Sbjct: 377 ALQARMGVGKFLSRSEQTELAERYVKLLGIKTETVDKPIGLLSGGNQQKAILARWMAIEP 436 Query: 422 QFLILDEPTRGIDVGAHAEIIRLIETLCADGLALLVISSELEELVGYADRVIIMRDRKQV 481 + LILDEPTRGIDV A EI+ I L G+A+L ISSE+ E+V A R++++RDR++V Sbjct: 437 RLLILDEPTRGIDVAAKQEIMDQILRLAQAGMAVLFISSEMSEVVRVAHRIVVLRDRRKV 496 Query: 482 AEIPLAELSVPAIMNAIAA 500 E+P A S A+ + IAA Sbjct: 497 GELP-AGSSEDAVYDLIAA 514 Lambda K H 0.321 0.138 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 628 Number of extensions: 25 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 517 Length adjustment: 34 Effective length of query: 466 Effective length of database: 483 Effective search space: 225078 Effective search space used: 225078 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory