Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate Ac3H11_4340 Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27)
Query= BRENDA::A0A081YAY7 (498 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_4340 Length = 505 Score = 723 bits (1867), Expect = 0.0 Identities = 353/496 (71%), Positives = 408/496 (82%) Query: 2 TLIKHLIGGELIADTGRTADVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNTPP 61 T + HLI G+ +AD RT VFNP+TG++ V LA + T++ AI +A+AAFPAWRNTPP Sbjct: 9 TTVGHLIDGKSVADAERTQPVFNPATGQSTTSVALASKATVEAAIASAEAAFPAWRNTPP 68 Query: 62 AKRAQVLFRFKQLLEANEERIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILKGE 121 KRA+V+ + K LLE N ++I LI+ EHGK + DA GEL+RGIENVEYA+ APE+LKGE Sbjct: 69 LKRARVMSKLKVLLEENADKIAALITAEHGKVLADAHGELQRGIENVEYASYAPELLKGE 128 Query: 122 YSRNVGPNIDAWSDFQPIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPSST 181 +SRNVGP+ID+WS+FQ +GV AGITPFNFPAMVPLWM+P+A+ACGNTF+LKPSERDPSST Sbjct: 129 HSRNVGPSIDSWSEFQALGVTAGITPFNFPAMVPLWMWPMAVACGNTFVLKPSERDPSST 188 Query: 182 LLIAELFHEAGLPKGVLNVVHGDKGAVDALIEAPEVKALSFVGSTPIAEYIYSEGTKRGK 241 L IA+L EAGLP GVLNVV+GDK AVD L++ P VKA+SFVGSTPIAEYIYSEG K GK Sbjct: 189 LFIAQLALEAGLPPGVLNVVNGDKLAVDTLLQDPRVKAVSFVGSTPIAEYIYSEGCKHGK 248 Query: 242 RVQALGGAKNHAVLMPDADLDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQKL 301 RVQALGGAKNHAVLMPDAD+ NAVSALMGAAYGSCGERCMAI + V VGD + DA++ L Sbjct: 249 RVQALGGAKNHAVLMPDADVGNAVSALMGAAYGSCGERCMAIPLLVAVGDAVGDAVIAGL 308 Query: 302 VPQIKGLKIGAGTSCGLDMGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAGHENG 361 +I +K+G GT DMGPLVT +KV Y+D+GV +GA LVVDGRG KVAGHE G Sbjct: 309 KTEIAKMKVGPGTDNSNDMGPLVTKPHFEKVKAYVDSGVTEGATLVVDGRGVKVAGHEEG 368 Query: 362 FFLGGTLFDRVTPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTRDGEA 421 +FLG LFD V P M IY+EEIFGPVL +VRV +L+EAMQLINDHEYGNGTCIFTRDGEA Sbjct: 369 YFLGACLFDNVKPGMKIYQEEIFGPVLGVVRVKTLQEAMQLINDHEYGNGTCIFTRDGEA 428 Query: 422 ARLFCDEIEVGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDGVRFYTKRKAITQRW 481 AR F D I+VGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPD VRFYTKRK ITQRW Sbjct: 429 ARYFTDHIQVGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDAVRFYTKRKTITQRW 488 Query: 482 PQRKSHEAAQFAFPSN 497 P E A F+FPS+ Sbjct: 489 PSAGVREGAVFSFPSS 504 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 828 Number of extensions: 20 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 505 Length adjustment: 34 Effective length of query: 464 Effective length of database: 471 Effective search space: 218544 Effective search space used: 218544 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory