Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate Ac3H11_2275 Propionyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.3)
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_2275 Length = 682 Score = 380 bits (976), Expect = e-110 Identities = 202/455 (44%), Positives = 287/455 (63%), Gaps = 13/455 (2%) Query: 4 FSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYL 63 F+++L+ANRGEIA RV+ ++MG+ +AVYS+ADK A H K ADEA +IG AP+ +SYL Sbjct: 2 FTKILIANRGEIACRVIATARKMGIATVAVYSDADKEARHVKLADEAVHIGAAPSRESYL 61 Query: 64 NIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKR 123 + II A ++ A+HPGYGFLSEN FA+ E GI FIGP + + + DK+ K+ Sbjct: 62 LADKIIAACKQTGAQAVHPGYGFLSENEAFAKRCEDEGIAFIGPKAHSIAAMGDKIASKK 121 Query: 124 LANMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMDVW 183 LAN A V T PG + + ++A+++A+ IGYP+M+KA++GGGG G+ N + + + Sbjct: 122 LANEAKVNTIPGYNDAIAGPEQAVEIAKGIGYPVMIKASAGGGGKGLRVAFNDKEAFEGF 181 Query: 184 ERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIEE 243 + A +FG +FIEK+ PRHIE Q++GD +GN + EREC+IQRR+QK+IEE Sbjct: 182 ASCQNEARNSFGDDRIFIEKFVQEPRHIEIQVLGDSHGNVIYLNERECSIQRRHQKVIEE 241 Query: 244 APSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHPTT 303 APSP + R++M E ++ K + Y + GT E +DFYFLE+N RLQVEHP T Sbjct: 242 APSPFISDATRKAMGEQAVQLAKAVKYQSAGTVEFVVGK-DQDFYFLEMNTRLQVEHPVT 300 Query: 304 ELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVTYY 363 E I +DLV+L I++AAGE LP +Q D+ + G AIE RINAED NF S+G + + Sbjct: 301 ECITGLDLVELMIRVAAGEKLPLTQADVKR--DGWAIECRINAEDPFRNFLPSTGRLVRF 358 Query: 364 REPTGP----------GVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALA 413 + P GVRVD+G+ G +P YYDS+++KLIV+G R AI AL Sbjct: 359 QPPEETMFQSDTTKKLGVRVDTGVYEGGEIPMYYDSMIAKLIVHGTDRNDAIAKMRAALN 418 Query: 414 DYKIGGIKTTIELYKWIMQDPDFQEGKFSTSYISQ 448 + I GI + I ++ P F G F+T +I++ Sbjct: 419 GFVIRGISSNIPFQAALLAHPKFVTGDFNTGFIAE 453 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 747 Number of extensions: 26 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 682 Length adjustment: 37 Effective length of query: 472 Effective length of database: 645 Effective search space: 304440 Effective search space used: 304440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory