Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate Ac3H11_954 Dihydroxy-acid dehydratase (EC 4.2.1.9)
Query= SwissProt::B5ZZ34 (579 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_954 Length = 567 Score = 306 bits (783), Expect = 2e-87 Identities = 189/530 (35%), Positives = 296/530 (55%), Gaps = 16/530 (3%) Query: 44 RPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPVFSASENTFRPT-----A 98 +P++G+ N S +TPCN L++LA+ AG+ EAGG + S+ T + Sbjct: 43 KPMVGVANGHSTITPCNSGLQKLADAAIAGIEEAGGNAQVFGTPTISDGMAMGTEGMKYS 102 Query: 99 MMYRNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASCDLPSIVVTGGPMLNGYF 158 ++ R + + +E + GQ MDG +++ GCDK P LMG ++P+I V GG +L G++ Sbjct: 103 LVSREVISDCIETCVGGQWMDGVLVVGGCDKNMPGGLMGMLRANVPAIYVYGGTILPGHY 162 Query: 159 RGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRSSGTCNTMGTASTMASMAEALGM 218 +G+ + + E AG+++ + E E +G+C M TA+TM+S EALG+ Sbjct: 163 QGKDLNIVSVFEAVGENA-AGKLSDFDLKEIEKRAIPGTGSCGGMYTANTMSSAFEALGI 221 Query: 219 ALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSEIMTKQAFENAIRTNAAIGGSTN 278 +L ++ + + A+ + + +++ +K D+KP +I+TK++ ENA+ A GGSTN Sbjct: 222 SLPYSSTMANPHDEKMNSAKESAKVLIEAIKKDIKPRDIVTKKSIENAVAVIMATGGSTN 281 Query: 279 AVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYLMEEFFYAGGLPVVLKRLGE 338 AV+H LAIA G++ S+DD++R P + +L PSGKYL + AGG+P V+K L Sbjct: 282 AVLHFLAIAHAAGVEWSIDDFERVRVKTPVLCDLKPSGKYLAVDLHRAGGIPQVMKVLLN 341 Query: 339 AGLLHKDALTVSGETVWDEVKDVVNW---NEDVILPAEKALTSSGGIVVLRGNLAPKGAV 395 AGLLH D LT+ G+TV + +KDV + ++DVI P + + G + +L+GNL+P+GAV Sbjct: 342 AGLLHGDCLTIEGKTVAEVLKDVPDQPRADQDVIRPINNPMYAQGHLAILKGNLSPEGAV 401 Query: 396 LKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENCIMVMKNCGPKGYPGMAEVG 455 K + ++ G A VFED I + + +MV++ GPKG PGM E+ Sbjct: 402 AKITGLKNPVIT--GPARVFEDEQSALEAILAGKIKAGD--VMVLRYLGPKGGPGMPEM- 456 Query: 456 NMGLPPKVLKKGILDMV-RISDARMSGTAYGTVVLHTSPEAAVGGPLAVVKNGDMIELDV 514 + ++ G+ + V I+D R SG +G VV H +PEAA GG +A V GD I +D Sbjct: 457 -LAPTGALIGAGLGESVGLITDGRFSGGTWGMVVGHVAPEAAAGGTIAFVHEGDSITIDA 515 Query: 515 PNRRLHLDISDEELARRLAEWQPNHDLPTSGYAFLHQQHVEGADTGADLD 564 L L++S+EE+ARR A W T G + A GA LD Sbjct: 516 RQLLLELNVSEEEIARRRAAWTAPAPRYTRGVQAKFAFNASSASKGAVLD 565 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 938 Number of extensions: 62 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 567 Length adjustment: 36 Effective length of query: 543 Effective length of database: 531 Effective search space: 288333 Effective search space used: 288333 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory