Align phosphogluconate dehydratase (EC 4.2.1.12) (characterized)
to candidate Ac3H11_955 Dihydroxy-acid dehydratase (EC 4.2.1.9)
Query= BRENDA::Q1PAG1 (608 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_955 Length = 619 Score = 209 bits (531), Expect = 4e-58 Identities = 181/595 (30%), Positives = 274/595 (46%), Gaps = 68/595 (11%) Query: 68 VAIVSSYNDMLSAHQPYEHFPEQIKKALREMGSVGQFAGGTPAMCDGVTQGEAGMELSLP 127 +A+V+S+ + H + + + + + G V + T A+ DG+ G GM SLP Sbjct: 37 IAVVNSFTQFVPGHVHLKDLGQLVAREIEAAGGVAK-EFNTIAVDDGIAMGHDGMLYSLP 95 Query: 128 SREVIALSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMPSG--- 184 SR++IA S ++ + DA + + CDKI PG++M A+R ++P IFV GGPM +G Sbjct: 96 SRDIIADSVEYMVNAHCADAMVCISNCDKITPGMLMAAMRL-NIPVIFVSGGPMEAGKTR 154 Query: 185 ----------ISNKEKADVRQRYAEGKATREELLESEMKSYHSPGTCTFYGTANTNQLLM 234 + D A+ + ++ E E + + G+C+ TAN+ L Sbjct: 155 LANPVTKVMEFKKLDLVDAMVIAADSNYSDADVAEVERSACPTCGSCSGMFTANSMNCLT 214 Query: 235 EVMGLHLPGASFVNPYTPLRDALTHEAAQQVTRLTKQ---SGNFTPIGEIVDERSLVNSI 291 E +GL LPG V R+ L A +++ L KQ + + V ++ N++ Sbjct: 215 EALGLSLPGNGTVVATHADREQLFKRAGRRIVDLAKQYYEQDDERVLPRSVGFKAFENAM 274 Query: 292 VALHATGGSTNHTLHMPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPN-GKADINHFQAA 350 A GGSTN LH+ AIA A I T D+ LS VVP L V PN K I A Sbjct: 275 TLDIAMGGSTNTILHLLAIASEAEIPFTMADIDRLSRVVPQLCKVAPNTNKYHIEDVHRA 334 Query: 351 GGMAFLIRELLEAGLLHEDVNTVAGRGLSRYTQEPFLDNGKLV----------WRDGPI- 399 GG+ ++ EL AG LH DV TV T + LD +V + GP Sbjct: 335 GGIMAILGELDRAGKLHTDVPTV-----HTATLKDALDQWDIVRTQDEAVRTFYMAGPAG 389 Query: 400 -------------ESLD----ENILRPVARAFSPEGGLRVMEGNLGRG--VMKVSAVALQ 440 SLD E +R AFS EGGL V+ GN+ V+K + V Sbjct: 390 VPTQVAFSQATRWPSLDLDRAEGCIRSYDHAFSKEGGLAVLTGNIAVDGCVVKSAGVDES 449 Query: 441 HQIVEAPAVVFQDQQDLADAFKAGELEKDFVAVMRFQGPRSN-GMPELHKMTPFLGVLQD 499 + E A V + Q + A +++ V ++R++GP+ GM E+ T ++ + Sbjct: 450 ILVFEGTAHVTESQDEAVANILADKVQAGDVVIVRYEGPKGGPGMQEMLYPTSYI-KSKG 508 Query: 500 RGFKVALVTDGRMSGASGKIPAAIHVSPEAQVGGALARVRDGDIIRVDGVKGTLELKVDA 559 G AL+TDGR SG + + H SPEA GGA+ V++GD IR+D T+ + V Sbjct: 509 LGKACALLTDGRFSGGTSGLSIG-HCSPEAAAGGAIGLVQNGDRIRIDIPNRTINVLVSD 567 Query: 560 DEFAAREPAKGLLG--------NNVGSGRELFGFMRMAFSSAEQGASAFTSALEN 606 +E A R A+ G V + + + + M SA++GA S LE+ Sbjct: 568 EELAKRREAQNAKGWKPAQPRPRKVSAALKAYAKLVM---SADKGAVRDLSLLED 619 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 869 Number of extensions: 50 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 608 Length of database: 619 Length adjustment: 37 Effective length of query: 571 Effective length of database: 582 Effective search space: 332322 Effective search space used: 332322 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory