Align methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate Ac3H11_1923 Geranyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.5)
Query= BRENDA::Q9I297 (535 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1923 Length = 537 Score = 442 bits (1137), Expect = e-128 Identities = 254/548 (46%), Positives = 336/548 (61%), Gaps = 27/548 (4%) Query: 2 AILHTQINPRSAEFAANAATMLEQVNALRTLLGRIHEGGGSAAQARH----SARGKLLVR 57 A+ ++ NP SAE A + +++ALR L E +AA AR RG+LL R Sbjct: 3 AVFTSRFNPGSAEATQRRAALQARLDALRAL-----EERAAAASARSLPQFEKRGQLLPR 57 Query: 58 ERINRLLDPGSPFLELSALAAH--EVYGEE--VAAAGIVAGIGRVEGVECMIVGNDATVK 113 +R+ LLD G+P+L L LA + +V E V G+VAGIG V GV CM+V +D+ ++ Sbjct: 58 QRVALLLDAGAPWLPLCTLAGYLQDVKDPEKSVPGGGMVAGIGFVSGVRCMVVASDSGIE 117 Query: 114 GGTYYPLTVKKHLRAQAIALENRLPCIYLVDSGGANLPR-QDEVFPDREHFGRIFFNQAN 172 G P+ ++K LR Q IAL+NRLP I+LV+S GANL R + E F H G +F N A Sbjct: 118 AGAIQPMGLEKILRVQEIALQNRLPFIHLVESAGANLMRYRVEGFV---HGGTLFRNLAR 174 Query: 173 MSARGIPQIAVVMGSCTAGGAYVPAMSDETVMVREQATIFLAGPPLVKAATGEVVSAEEL 232 +SA GIP I V GS TAGGAY+P +SD +MV+ ++ FLAGPPL+KAATGE+ + EEL Sbjct: 175 LSAAGIPVITVQHGSGTAGGAYMPGLSDVVIMVQGRSRAFLAGPPLLKAATGEIATEEEL 234 Query: 233 GGADVHCKVSGVADHYAEDDDHALAIARRCVANLNWRKQGQLQCRAPRAP--LYPAEELY 290 GGA++H VSG+ ++ A+DD A+ +AR VA L W R P AP L PA++L Sbjct: 235 GGAEMHTAVSGLGEYLAQDDREAIGLARDVVAQLGWNMP-----RRPSAPVPLLPADDLL 289 Query: 291 GVIPADSKQPYDVREVIARLVDGSEFDEFKALFGTTLVCGFAHLHGYPIAILANNGILFA 350 ++ AD +QP D+REV+ARLVDGSE EFKA +G VC H+ G+ + ++NNG + Sbjct: 290 SLMSADLRQPVDMREVMARLVDGSELLEFKARYGMATVCAQGHIGGHAVGFISNNGPIDV 349 Query: 351 EAAQKGAHFIELACQRGIPLLFLQNITGFMVGQKYEAGGIAKHGAKLVTAVACARVPKFT 410 A K HFI+ CQ G P+++LQN TG+MVG+ E GG+ KHG+K++ AV A VP+ T Sbjct: 350 AGANKATHFIQWMCQLGHPIIYLQNTTGYMVGKDSEQGGMIKHGSKMIQAVTNATVPQIT 409 Query: 411 VLIGGSFGAGNYGMCGRAYDPRFLWMWPNARIGVMGGEQAAGVLAQVKREQAERAGQQLG 470 + G SFGAGNYGMCGR Y PRFL+ WP A+ VMGGEQAA + V R G Sbjct: 410 IQCGASFGAGNYGMCGRGYAPRFLFSWPGAKTAVMGGEQAARTMQIVTEAALARKGITPD 469 Query: 471 VEEEAKIKAPILEQYEHQGHPYYSSARLWDDGVIDPAQTREVLALALSAALNA---PIEP 527 E I+ +E Q +Y+S L DDGVIDP TR VLA L A + P Sbjct: 470 PAESQAQFDKIVAMFEAQADVFYTSGLLLDDGVIDPRDTRAVLAFCLDTCAEAQARTLRP 529 Query: 528 TAFGVFRM 535 +FGV RM Sbjct: 530 LSFGVARM 537 Lambda K H 0.321 0.137 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 705 Number of extensions: 32 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 537 Length adjustment: 35 Effective length of query: 500 Effective length of database: 502 Effective search space: 251000 Effective search space used: 251000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory