Align 3-methyl-2-oxobutanoate:ferredoxin oxidoreductase (EC 1.2.7.7) (characterized)
to candidate Ac3H11_2707 Indolepyruvate ferredoxin oxidoreductase, alpha and beta subunits
Query= reanno::Cup4G11:RR42_RS19540 (1197 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_2707 Length = 1161 Score = 1265 bits (3273), Expect = 0.0 Identities = 657/1174 (55%), Positives = 825/1174 (70%), Gaps = 30/1174 (2%) Query: 20 VSLEDKYTLERGRVYISGTQALVRLPMLQRERDRAAGLNTAGFISGYRGSPLGALDQSLW 79 VSL DKY L GRVY++GTQALVRL + Q+ RD AAGLNT GF+SGYRGSPLGA+DQ LW Sbjct: 5 VSLADKYELPAGRVYMNGTQALVRLLLAQKARDEAAGLNTEGFVSGYRGSPLGAVDQELW 64 Query: 80 KAKQHLAAHDIVFQAGLNEDLAATSVWGSQQVNMYPDARFEGVFGMWYGKGPGVDRTSDV 139 K + L H + FQ GLNE+LAATSVWG+Q V++ P AR +GVF +WYGKGPGVDR+ DV Sbjct: 65 KNRALLDKHKVRFQPGLNEELAATSVWGTQMVSLDPKARVDGVFALWYGKGPGVDRSGDV 124 Query: 140 FKHANSAGSSRHGGVLVLAGDDHAAKSSTLAHQSEHIFKACGLPVLYPSNVQEYLDYGLH 199 FKH N AG + HGGVL++AGDDHA KSS+L HQSEH F A +PVL+PS V E++++GLH Sbjct: 125 FKHGNIAGGAPHGGVLLVAGDDHACKSSSLPHQSEHAFIAAMIPVLHPSGVNEFIEFGLH 184 Query: 200 AWAMSRYSGLWVSMKCVTDVVESSASVELDPHRVEIVLPQDFILPPGGLNIRWPDPPLEQ 259 +AMSRYSG WV K ++D VESS+S ++DP VEI +PQ + +P G +IRWPDPPLEQ Sbjct: 185 GYAMSRYSGCWVGFKVISDTVESSSSFDIDPMSVEIKIPQSYPVPADGFSIRWPDPPLEQ 244 Query: 260 EARLLDYKWYAGLAYVRANKIDRIEIDSPHARFGIMTGGKAYLDTRQALANLGLDDETCA 319 E RL + YA L YVR NK++R + P AR GI T GK+YLD R+AL+ LGLD+ Sbjct: 245 ENRLQRERLYALLEYVRLNKLNRQDWAVPDARLGICTTGKSYLDVREALSLLGLDEAAAQ 304 Query: 320 RIGIRLYKVGCVWPLEAHGARAFAEGLQEILVVEEKRQIMEYALKEELYNWRDDVRPKVY 379 +G+RL K+G VWPLE FA+GL EILVVEEKRQ++EY +KE LYN + RP+V Sbjct: 305 ALGVRLLKIGVVWPLEPTCVVEFAQGLDEILVVEEKRQVLEYQIKEHLYN--EPHRPRVV 362 Query: 380 GKFDEKDNAGGEW-SIPQSNWLLPAHYELSPAIIARAIATRLDKF----ELPADVRARIA 434 GK+DE GEW +P S LL + EL+PA IA IA RL K LP VR + Sbjct: 363 GKYDE----SGEWVQVPSSGILLSPNGELTPAGIADVIAARLVKVYGQGVLPESVRVWLE 418 Query: 435 ARIAVIEAKEKAMAVPRVAAERKPWFCSGCPHNTSTNVPEGSRALAGIGCHYMTVWMDRS 494 + V VP +R P+FCSGCPHNTST VPEGSRALAGIGCHYM++WMDR Sbjct: 419 RQAVVATRSPSDAPVP----QRLPYFCSGCPHNTSTQVPEGSRALAGIGCHYMSMWMDRR 474 Query: 495 TSTFSQMGGEGVAWIGQAPFAGDKHVFANLGDGTYFHSGLLAIRASIAAGVNITYKILYN 554 T TFSQMGGEGV WIGQAP+ HVFANLGDGTY HSG LAIRA++AAGVNITYK+L N Sbjct: 475 TETFSQMGGEGVPWIGQAPYTDTPHVFANLGDGTYMHSGSLAIRAAVAAGVNITYKLLVN 534 Query: 555 DAVAMTGGQPIDGKLSVQDVANQVAAEGARKIVVVTDEPEKYSAAIKLPQGVEVHHRDEL 614 DAVAMTGGQP++G SV + Q+AAEG +++ +V+DEPE + A P+ V+V HRD + Sbjct: 535 DAVAMTGGQPVEGAPSVPQLLRQLAAEGVKELHLVSDEPEAFQALDDFPKDVKVSHRDGM 594 Query: 615 DRIQRELREVPGATILIYDQTCATEKRRRRKRGTYPDPAKRAFINDAVCEGCGDCSVKSN 674 D +QR LR+V G ++++Y QTCA EKRRRRK+ T DPA+R IN+AVCEGCGDC V+SN Sbjct: 595 DALQRALRDVKGVSVIVYAQTCAAEKRRRRKKKTLADPARRVVINEAVCEGCGDCGVQSN 654 Query: 675 CLSVEPLETELGTKRQINQSSCNKDFSCVNGFCPSFVTAEGAQVKKPERHGVSMDNLPAL 734 C+S+ PLET LG KRQI+QS CNKDFSCV GFCPSFV +GA+++KP+R V+ + Sbjct: 655 CVSILPLETPLGRKRQIDQSGCNKDFSCVRGFCPSFVVLDGAELRKPQRDRVAPPT--GM 712 Query: 735 PQPALPGLEHPYGVLVTGVGGTGVVTIGGLLGMAAHLENKGVTVLDMAGLAQKGGAVLSH 794 +P LP L P+ +LV GVGGTGVVTIG L+GMAAHLE KGV VLDMAGLAQKGGAV+SH Sbjct: 713 ARPELPVLARPWNILVAGVGGTGVVTIGALMGMAAHLEGKGVLVLDMAGLAQKGGAVMSH 772 Query: 795 VQIAAHPDQLHATRIAMGEADLVIGCDAIVSAIDDVISKTQVGRTRAIVNTAQTPTAEFI 854 V++AA P QLHA R+A G+AD+V+GCD +V+A D ++ GRTRA++NT PT F Sbjct: 773 VRLAADPVQLHAARVARGQADVVLGCDLMVAAAGDALASMASGRTRAVLNTDVAPTGSFT 832 Query: 855 KNPKWQFPGLSAEQDVRNAVGEACDFINASGLAVALIGDAIFTNPLVLGYAWQKGWLPLS 914 ++P WQ + + V +A + + + AS LAVAL+GDA+ TN +LG+AWQKGW+PL Sbjct: 833 RDPDWQASPDAMLERVGSAAAQV-ESLEASRLAVALMGDAVATNVFLLGFAWQKGWVPLQ 891 Query: 915 LDALVRAIELNGTAVEKNKAAFDWGRHMAHDPEHVLSLTGKLRNTAEGAEVVKLPTSSGA 974 D+L+RAIELNG AV N+AAF WGR A DP V G E V L S A Sbjct: 892 EDSLLRAIELNGAAVGMNRAAFAWGRQAALDPAAVRRAAG-----LPSDEKVMLMPSRTA 946 Query: 975 LLEKLIAHRAEHLTAYQDAAYAQTFRDTVSRVRAAESALVGNGKPLPLTEAAARNLSKLM 1034 L ++A R E L YQ+A YAQ + V RV E A VG + L A +L KLM Sbjct: 947 SLASILADRTERLADYQNARYAQHYAAVVRRVSDVEKARVGGER---LAREVAMSLYKLM 1003 Query: 1035 AYKDEYEVARLYTDPIFLDKLRNQFEGEPGRDYQLNFWLAPPLMAKRDEKGHLVKRRFGP 1094 AYKDEYEVARL+T FL +L+ +FEG D+ ++++LAPPL+A+RD +G VK+R+G Sbjct: 1004 AYKDEYEVARLHTSSDFLARLQERFEG----DFTVSYYLAPPLLARRDAQGRPVKQRYGA 1059 Query: 1095 STMKLFGVLAKLKGLRGGVFDVFGKTAERRTERALIGEYRALLEELTRGLSAANHATAIT 1154 F +LA+L+ LRG VFD FG T ERR ERA I E+ AL+E+L + L++ N A+ Sbjct: 1060 WVQTAFRLLARLRFLRGTVFDPFGWTRERREERAAIDEFEALVEDLLKDLNSNNFNEALA 1119 Query: 1155 LASLPDDIRGFGHVKDDNLAKVRTRWTALLEQFR 1188 LA LP +RG+GHVK + + LL ++R Sbjct: 1120 LARLPQQVRGYGHVKAREHEVAQKKALELLARWR 1153 Lambda K H 0.319 0.135 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 3279 Number of extensions: 141 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 1197 Length of database: 1161 Length adjustment: 47 Effective length of query: 1150 Effective length of database: 1114 Effective search space: 1281100 Effective search space used: 1281100 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 58 (26.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory