Align Inositol transport system ATP-binding protein (characterized)
to candidate Ac3H11_1109 ABC transporter ATP-binding protein
Query= reanno::WCS417:GFF2332 (517 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_1109 ABC transporter ATP-binding protein Length = 513 Score = 278 bits (710), Expect = 4e-79 Identities = 170/494 (34%), Positives = 270/494 (54%), Gaps = 13/494 (2%) Query: 27 VNISKGFPGVVALADVQLRVRPGTVLALMGENGAGKSTLMKIIAGIYQPDAGEIRLRGKP 86 V I+K +P VVA + V L V PG + A++GENGAGKSTLMKII G +PD G + G+ Sbjct: 1 VGITKRYPAVVANSGVSLTVLPGEIHAVLGENGAGKSTLMKIIYGSVKPDEGSVFFNGQA 60 Query: 87 IVFETPLAAQKAGIAMIHQELNLMPHMSIAENIWIGREQLNSLHMVNHREMHRCTAELLA 146 + P A+ GIAM+ Q +L +++AEN+W+G ++ +L V R + A Sbjct: 61 VQVRNPQEARALGIAMVFQHFSLFDTLTVAENVWLGLDKSLTLAEVTQRISAKA-----A 115 Query: 147 RLRINLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITEKEVAHLFSIIADL 206 +++DP V LS+ E Q VEI +A+ + +LI+DEPTS +T + V LF ++ L Sbjct: 116 EYGLDIDPLRPVHTLSVGEMQRVEIIRALLTNPKVLILDEPTSVLTPQAVEKLFVVLRKL 175 Query: 207 KSQGKGIVYITHKMNEVFAIADEVAVFRDGHYIGLQRADSMNSDSLISMMVGRELSQLFP 266 S+G I+YI+HK++E+ A+ V R G G+ + SL +M+G E L Sbjct: 176 ASEGCSILYISHKLHEIRALCTACTVLRGGKVTGVCNPSEETNASLSRLMIGAEPPAL-E 234 Query: 267 LRETPIGDLLLTVRDLTLDGVFK------DVSFDLHAGEILGIAGLMGSGRTNVAETIFG 320 R G +L V+ L+L + D+ F++ AGE++GIAG+ G+G+ + + G Sbjct: 235 HRAVQTGATVLRVKGLSLPRADQFGVDLIDLQFEVKAGEVVGIAGVSGNGQKELLYALSG 294 Query: 321 ITPSSS-GQITLDGKAVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMAVLPHY 379 + I + G+ P G + E+R G P + + N+ + Sbjct: 295 EDQRAEPASIQVTGQNAGRMGPGQRRALGLHFVPEERLGRGAVPTMGLAHNLLLTRKNAV 354 Query: 380 TGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNPRLLILD 439 G+G+I+ AL+ ED+ ++ VK +LSGGN QK ++ R + NP+LLI+ Sbjct: 355 GGSGWIKVGALQKHAEDIIQRFNVKAGGPHSAAKSLSGGNLQKFIVGREIDANPKLLIVS 414 Query: 440 EPTRGIDVGAKAEIYRLIAFLASEGMAVIMISSELPEVLGMSDRVMVMHEGELMGTLDRS 499 +PT G+DVGA A+I I L G AV+++S EL E+ + DR+ V+ +G L ++ R+ Sbjct: 415 QPTWGVDVGAAAQIRGSILALRDAGCAVLVVSEELDELFEICDRLHVVAKGRLSPSVQRA 474 Query: 500 EATQEKVMQLASGM 513 EAT E++ + SG+ Sbjct: 475 EATVERIGEWMSGL 488 Lambda K H 0.320 0.136 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 548 Number of extensions: 25 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 513 Length adjustment: 35 Effective length of query: 482 Effective length of database: 478 Effective search space: 230396 Effective search space used: 230396 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory